信源编码定理

信源编码的信源编码定理

不同类型的信源,是否存在有每种信源的最佳的信源编码,这通常是用信源编码定理来表示。最简单、最有实用指导意义的信源编码定理是离散、无记忆型信源的二进制变长编码的编码定理。它证明,一定存在一种无失真编码,当把N个符号进行编码时,平均每个符号所需二进码的码长满足。其中H(U)是信源的符号熵(比特),这就是说,最佳的信源编码应是与信源信息熵H(U)统计匹配的编码,代码长度可接近符号熵。这一结论不仅表明最佳编码存在,而且还给出具体构造码的方法,即按概率特性编成不等长度码。对不同类型信源,如离散或连续、无或有记忆、平稳或非平稳、无或限定失真等,可以构成不同的组合信源,它们都存在各自的信源编码定理。但它们中绝大部分仅是属于理论上的存在性定理,这给具体寻找和实现不同类型信源的信源编码,带来了相当的难度。

信源编码的原理(急需)

信源编码是信息本身的编码,信道编码是为了适应信道的特征的编码。

信源编码和信道编码的作用是什么?

信源编码是对输入信息进行编码,优化信息和压缩信息并且打成符合标准的数据包。信道编码是在数据中加入验证码,并且把加入验证码的海据进行调制。 2者的作用完全不一样的。

香农三大定理的香农第一定理

香农第一定理(可变长无失真信源编码定理)设离散无记忆信源X包含N个符号{x1,x2,…,xi,..,xN},信源发出K重符号序列,则此信源可发出N^k个不同的符号序列消息,其中第j个符号序列消息的出现概率为PKj,其信源编码后所得的二进制代码组长度为Bj,代码组的平均长度B为B=PK1B1+PK2B2+…+PKN^kBN^k当K趋于无限大时,B和信息量H(X)之间的关系为B*K=H(X)(K趋近无穷)香农第一定理又称为无失真信源编码定理或变长码信源编码定理。香农第一定理的意义:将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息。

怎样理解失真函数对于信源编码的指导意义

三:香农第三定理(保失真度准则下的有失真信源编码定理) 设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为M<=EXP{N[R(D)+a]},而编码后码的平均失真度D'(W)<=D+a

通信原理中,信源编码中为什么用同步信号源后可观测到稳定的编码?

当然了,如果信号不同步怎么得到其中的信息,比如说一个汉字“好”,不同步你有可能得到的信息是“子女”

香农三大定理的香农第三定理

香农第三定理(保失真度准则下的有失真信源编码定理)保真度准则下的信源编码定理,或称有损信源编码定理。只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D.设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为M<=EXP{N[R(D)+a]},而编码后码的平均失真度D'(W)<=D+a。

香农三大定理的介绍

香农三大定理是信息论的基础理论。香农三大定理是存在性定理,虽然并没有提供具体的编码实现方法,但为通信信息的研究指明了方向。香农第一定理是可变长无失真信源编码定理。香农第二定理是有噪信道编码定理。香农第三定理是保失真度准则下的有失真信源编码定理。

香农三大定理的香农第二定理

香农第二定理(有噪信道编码定理)有噪信道编码定理。当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。设某信道有r个输入符号,s个输出符号,信道容量为C,当信道的信息传输率R

扫一扫手机访问

发表评论