聚类分析的分析原理是什么。
聚类分析是研究“物以类聚”的一种科学有效的方法。做聚类分析时,出于不同的目的和要求,可以选择不同的统计量和聚类方法。
系统聚类是目前应用最为广泛的一种聚类方法,其基本思想是:先将待聚类的n个样品(或者变量)各自看成一类,共有n类;然后按照实现选定的方法计算每两类之间的聚类统计量,即某种距离(或者相似系数),将关系最为密切的两类合为一类,其余不变,即得到n-1类;再按照前面的计算方法计算新类与其他类之间的距离(或相似系数),再将关系最为密切的两类并为一类,其余不变,即得到n-2类;如此下去,每次重复都减少一类,直到最后所有的样品(或者变量)都归为一类为止。
主成分分析法和聚类分析法的区别
我以前回答过这个问题,你参考一下吧
zhidao.baidu.com/...搁伟功连ml
几种聚类分析分别适用什么样的情况
简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类.
简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程.
区别是,分类是事先定义好类别 ,类别数不变 .分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴.聚类则没有事先预定的类别,类别数不确定. 聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成 .分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等.
分类的目的是学会一个分类函数或分类模型(也常常称作分类器 ),该模型能把数据库中的数据项映射到给定类别中的某一个类中. 要构造分类器,需要有一个训练样本数据集作为输入.训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记.一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别.分类器的构造方法有统计方法、机器学习方法、神经网络方法等等.
聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组.其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示.聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题.常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANS、 BIRCH、CLIQUE、DBSCAN等.
成人高考主要考哪些
文科:语文 英语 政治
理科 :英语 政治 高数(1)
经管:英语 政治 高数(2)
有的专业需要专业加试
spss聚类分析系统聚类得出的聚类表解读
第一列表示这是聚类的第几步;
第二、第三列表示在这一步中,哪些样本或小类聚类在了一起(在前面步奏中聚类在一起的小类将以前面一个来命名该小类);
第四列表示改步聚类样本个体或者小类之间的距离;
第五、六列表示第几步生成的小类将在该步与本步的样本聚类(之前的步奏);
第七列表示该步生成的小类将在第几步中用到(之后的步奏)。
个人理解回答,纯手打- - - - -
如何确定k-means聚类分析
一,K-Means聚类算法原理
k-means 算法接受参数 k
;然后将事先输入的n个数据对象划分为
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对
象”(引力中心)来进行计算的。
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法描述如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。
数据挖掘,聚类分析算法研究的目的和意义是什么! 15分
图像分割
基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通集合。常用方法有:
1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;
2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;
3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。
具体的阈值分割:
阈值分割方法分为以下3类:
1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。
2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。
3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。
全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:
1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。
2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。
3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。
全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。
参详《数字图像处理》工具:MATLAB或VC++