迈克尔逊干涉实验原理

一:急求迈克尔逊干涉仪原理

迈克尔逊干涉仪的结构和工作原理

G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。当M2和M1’严格平行时,M2移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“消失”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”一个个条纹。M2和M1’不严格平行时,则表现为等厚干涉条纹,M2移动时,条纹不断移过视场中某一标记位置,M2平移距离 d 与条纹移动数 N 的关系满足。

迈克尔逊干涉仪示意

经M2反射的光三次穿过分光板,而经M1反射的光只通过分光板一次.补偿板就是为了消除这种不对称而设置的.在使用单色光源时,补偿板并非必要,可以利用空气光程来补偿;但在复色光源时,因玻璃和空气的色散不同,补偿板则是不可缺少的。

若要观察白光的干涉条纹,两相干光的光程差要非常小,即两臂基本上完全对称,此时可以看到彩色条纹;若M1或M2稍作倾斜,则可以得到等厚的交线处(d=0)的干涉条纹为中心对称彩色直条纹,中央条纹由于半波损失为暗条纹。

参考资料:www.bb.ustc.edu.cn/...n.html

二:迈克尔逊干涉仪的工作原理

迈克尔逊干涉仪(英文:Michelson interferometer)是光学干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·亚伯拉罕·迈克尔逊。迈克耳逊干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。干涉条纹是等光程差点的轨迹,因此,要分析某种干涉产生的图样,必求出相干光的光程差位置分布的函数。若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。G2是一面镀上半透半反膜,G1为补偿板,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可以向前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。当M2和M1’严格平行时,M2会移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“吞进”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”。M2和M1’不严格平行时,则表现为等厚干涉条纹,在M2移动时,条纹不断移过视场中某一标记位置,M2平移距离 d 与条纹移动数 N 的关系满足:d=Nλ/2,λ为入射光波长。迈克尔逊干涉仪示意图:经M2反射的光三次穿过G2分光板,而经M1反射的光通过G2分光板只一次。G1补偿板的设置是为了消除这种不对称。在使用单色光源时,可以利用空气光程来补偿,不一定要补偿板;但在复色光源时,由于玻璃和空气的色散不同,补偿板则是不可或缺的。如果要观察白光的干涉条纹,臂基本上完全对称,也就是两相干光的光程差要非常小,这时候可以看到彩色条纹;假若M1或M2有略微的倾斜,就可以得到等厚的交线处(d=0)的干涉条纹为中心对称的彩色直条纹,中央条纹由于半波损失为暗条纹。迈克尔逊和爱德华·威廉姆斯·莫雷使用这种干涉仪于1887年进行了著名的迈克耳逊-莫雷实验,并证实了以太的不存在。

三:迈克尔逊干涉仪及应用实验原理

利用分振幅法干涉原理

四:迈克尔逊干涉仪的工作原理

从半导体激光器输出的光,耦合到光纤中,经过耦合器分束进入干涉仪的两条光纤臂中,在光纤臂的两端直接镀上反射膜以实现传统分立元件迈克尔逊干涉仪中两反射镜的功能,由此反射回来的光再经耦合器汇合,形成干涉,由探测器进行检测。

该干涉仪最大特点是光路全封闭,光纤两臂可绕成任意形状,结构灵活,抗电磁干扰,对被测介质影响小,适应性强等特点,因此,它的应用可以延伸到许多传统干涉仪的禁区,例如用于恶劣环境的高灵敏度传感、水声探测和地下核爆核查测试。它是许多高灵敏度光纤传感器的重要物理基础。由于光纤两个反射臂中的光传导特性可以受激温度、压力等外在条件的影响,所以,光纤迈克尔逊干涉仪可以实现光纤应变、温度等物理量的测量。

扫一扫手机访问

发表评论