一:关于纳米技术纳米技术有何用,未来的前景如何
一、纳米技术的概念
纳米技术是用单个原子、分子制造物质的科学技术,研究结构尺寸在1至100纳米范围内材料的性质和应用。
纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等
二、纳米技术的应用
当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。
三、纳米技术的前景
美国:
1、美国发展最新纳米细胞制造技术
2、DNA检测芯片的进展
3、地下水污染改善之研究
4、启动癌症纳米科技计划
欧盟:
1、欧盟的国际纳米科学研究政策
2、创新接继中心
日本:
1、日本理研的纳米科学研究现况
2、日本提高纳米科技预算与产业合作
韩国:
1、韩国的纳米科技策略
2、韩国预测国际市场对纳米纺织品的需求将快速增加
3、韩国在纳米科技的发展几乎完全集中在微电子产业
中国:
1.“中国实验室国家认可委员会”是负责实验室和检查机构认可及相关工作的认可机构,为规范纳米产品市场、推动制定相关纳米材料及产品的标准,“国家纳米科学中心”和“中国实验室国家认可委员会”会商多次,联合成立“纳米技术专门委员会”,挂靠在“国家纳米科学中心”。
2. 中国政府透过中国科学院主导众多纳米科技研发计划,多数强调半导体制造技术和发展以纳米科技为基础的电子元件,另一是利用纳米材料保存考古文物。
已成功发展出的产品包括新式冷气机,其特点为利用创新的纳米材质。另估计约有两百家企业积极从事纳米科技产品的商业化。
二:纳米技术的发展趋势
高级纳米技术,有时被称为分子制造,用于描述分子尺度上的纳米工程系统(纳米机器)。无数例子证明,亿万年的进化能够产生复杂的、随机优化的生物机器。在纳米领域中,我们希望使用仿生学的方法找到制造纳米机器的捷径。然而,K Eric Drexler和其他研究者提出:高级纳米技术虽然最初会使用仿生学辅助手段,最终可能会建立在机械工程的原理上。 美国国家科学委员会(National Science Board)于西元2003年底批准“国家纳米科技基础结构网络计划”(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,简称NNIN),将由美国13所大学共同建构支持全国纳米科技与教育的网络体系。该计划为期5年,于公元2004年一月开始执行,将提供整体性的全国性使用技能以支持纳米尺度科学工程与技术的研究与教育工作。预估5年间至少投资700亿美元的研究经费。计划目的不仅在提供美国研究人员顶尖的实验仪器与设备,并能训练出一批专精于最先进纳米科技的研究人员。1.美国发展最新纳米细胞制造技术纳米技术可制造出粒子小于人类血管大小的物体,美国国家标准与科技协会(NIST)指出已研究出一种生产一致的,且能够自行组合的纳米细胞(Nanocells)的方法,以应用在封装压缩药物的治疗工作上。这种技术当前可被运用在药物的包装技术上,可以更精确地确保药物的用量,未来将运用在癌症化学治疗的相关技术上作更进一步的研究。纳米计划是公元2005年联邦跨部会研发预算的主轴,达9.8亿美元。2.DNA检测芯片的进展公元2004年一月,美国HP正式对外发表其用来快速进行DNA检测的纳米级芯片。2004年在DNA检测上采以光学原理为基础的“基因微芯片法”(DNA microarrays)繁复的检测步骤,HP团队改由将此繁复步骤交由电路芯片处理;制作上,DNA检测芯片的传感元件是一条利用电子束蚀刻法(electron-beam lithography)与反应性离子蚀刻法(reactive-ion etching)所制成粗细约50纳米的纳米线。然就商业上考量,成果却过于高昂,因此研究团队正发展利用较便宜的光学蚀刻法(optical lithography)以制成DNA检测芯片元件的技术。3.地下水污染改善之研究地下水污染是现代被广泛讨论的一项重大议题,现代,美国发表了一种纳米微粒(nanoparticles)技术,在此微粒中心为铁芯(iron)而其外则由多层聚合物加以包覆,其中,内层是由防水性极佳的复合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,而外层则由亲水的sulphonated polystyrene进行包覆。由于亲水性外层使纳米微粒溶于水,内层防水层则能吸引污染源三氯乙烯(trichloroethylene)。纳米微粒中的铁芯使得三氯乙烯产生分裂,进而使得此项污染源逐渐分裂成无毒的物质。4.启动癌症纳米科技计划为广泛将纳米科技、癌症研究与分子生物医学相互结合,美国国家癌症中心(NCI)提出了癌症纳米科技计划(Cancer Nanotechnology Plan),并将透过院外计划、院内计划与纳米科技标准实验室等三方面进行跨领域工作。计划设定了六个挑战:预防与控制癌症:发展能投递抗癌药物及多重抗癌疫苗的纳米级设备。早期发现与蛋白质学:发展植入式早期侦测癌症生物标记的设备,并发展能收集大量生物标记进行大量分析的平台性装置。影像诊断:发展可提......余下全文>>
三:纳米技术对我们未来生活有什么影响
当然我想大家更关心的是,这个纳米科技究竟有什么用﹖与我们的衣食住行有什么关系﹖简单的一句话可以说纳米科技是大大的有用,非常有用。尽管我们现在很难感受到它的存在,那么在不远的将来,我相信大家会越来越感觉到人的生活、人的工作都离不开纳米科技。纳米科技它可以广泛地用于环境的治理,用于环境的改善。大家知道北京的车比较多,汽车的尾气污染非常严重,那么纳米科技对环境污染的治理就是一个很重要的科技,很有利的一种武器。
大家看看这个纳米管材料,就是这个小东西,这里面就是个纳米管。这个管状东西可以用来储氢气,储氢以后可以用来做什么东西呢﹖可以用来做颜料、电池,电池放到汽车上可以用于绿色环保汽车。它燃烧之后生产什么﹖生产水,发出的电可以推动汽车跑。水自然是没有污染的,汽车可以从根本上解决污染问题。
还有我们知道,汽车现在是个铁家伙,很重的一个。因为它的大部分都是金属部件,现在大家研究什么东西呢﹖如果把纳米粒子跟塑料、跟聚合物结合起来,用它来取代金属部件,那么这样做成的汽车就会特别特别的轻,特别轻了以后就很省油。有人曾经计算过,如果用这样的东西,用纳米技术做成汽车的话,它可以每年节省汽油15亿升,它既减少了环境污染,又可以节省能源,而且汽油燃烧一少了,自然二氧化碳的排出也就少了。
现在大家生活水平都提高了,大家也越来越有余力去重视健康问题,纳米科技在这个方面也有非常广阔的应用前景。
比方说现在医疗水平,一般是等到疾病发展到一定程度的时候你才能诊断出来,这是很难办的事情。如果能早知道病情,早期治疗,早期检测的话,显然对治疗是有好处的。就像克林顿曾经说过的,如果说癌症在几个细胞的时候你就能发现它,显然对治疗特别有利。而纳米技术就有可能,因为纳米技术的检测灵敏度特别高。你甚至可以把一个纳米大小的传感器放到身体的重要器官里面去,比如说你放到心脏里面去。放到肺部里面去,时刻监测运行状态看它是否发生病变。这样的话,显然是有利于疾病的早期检测,并进行更好的治疗。将来说不定某一天,我们可以把纳米的机器人放到身体里面去,直接顺着血管清除病脏。再举个例子,比方说感冒,大家感冒吃药,我吃一次可以管12个小时。而纳米技术,说不定将来用纳米技术做成的药一次可以管一周,也就是说你吃一次就足够了,甚至管它一个月不会感冒也有可能,这是所谓的纳米缓食技术。还有呢,利用纳米技术,你可以让做成的药直接到达原来到达不了的病脏地方,既提高效率又可以减少对正常器官的损害,这是所谓的纳米定向,药物输送技术。将来或许在人体的里面,很可能装有很多的纳米尺度的零部件。或许在将来的某一天,我们甚至随着对大脑记忆功能的认识,可以把这个纳米记忆芯片直接跟大脑连接起来。到那个时候或许我们大家就不用学习了,因为学习是个很辛苦的事情。
实际上在衣食往行的各个方面,将来你都会找到纳米技术的影子。比方说衣,大家现在看广告,已经看到利用纳米技术做的衣服,它可以不用洗。对像我这样一个比较懒的不愿洗衣服的人可能是比较合适,但衣服如果不用洗的话纳米洗衣机似乎也没什么用处了。关于食,纳米是不能吃的,但纳米技术跟吃有关系,比方说,利用纳米技术可以提高农作物的产量,而且利用纳米技术可以做绿色化肥、绿色农药,这样大家就不用担心菜上面洗了以后是不是还有残留物,担心对身体健康有影响。住,日本的科学家关于住的方面作了一个非常漂亮的技术,就是一种纳米涂料,这种纳米涂料叫作治清洁材料。这种治清洁材料涂到玻璃、墙壁上,它可以直接清除污垢、杀菌消毒。如果利用这些材料去做成住房的话,大家就不用擦玻璃了,高层......余下全文>>
四:纳米材料的应用前景
随着我国对纳米材料的持续政策支持和研发投入,以及下游需求对纳米材料的持续拉动,未来我国纳米材料行业将保持快速发展态势。据前瞻产业研究院《中国纳米材料行业发展前景与投资预测分析报告》中根据我国纳米材料的历史发展规律,结合当前的政策支持和纳米材料发展状况,预测未来5年我国纳米材料的市场规模将出现较大幅度的增长,年均增幅在15%以上,到2017年纳米材料的市场规模将超过70亿元。
从各国对纳米材料和纳米科技的部署来看,当前世界各国纳米科技战略是:以经济振兴和国家实力的需求为目标,牵引纳米材料的基础研究、应用研究;组织多学科的科技人员交叉创新,做到基础研究、应用研究并举,纳米科学、纳米技术并举,重视基础研究和应用研究的衔接,重视技术集成;重视发展纳米材料和技术改造传统产品,提高技术含量;重视纳米材料和纳米技术在环境、能源和信息等领域的应用,实现跨越式发展。我国的纳米材料发展也呈现相同的趋势,同时结合环境、能源环保、生物医药等行业重点发展相关纳米技术。
五:纳米材料的发展历程
纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。这位当时在加州理工大学任教的教授向同事们提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。范曼质问道,为什么我们不可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”
1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了ibm三个字母。这证明范曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。
著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想;
70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工;
1982年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;
1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;
1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“ibm”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;
1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;
1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;
到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;
近年来,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点;德国专门建立纳米技术研究网;美国将纳米计划视为下一次工业革命的核心,美国政府部门将纳米科技基础研究方面的投资从1997年的1.16亿美元增加到2001年的4.97亿美元。
2003年,纳米技术在基础研究和应用研究方面都取得了突破性进展。如:美国利用超高密度晶格和电路制作新方法,获得高密度的铂纳米线;日本用单层碳纳米管与有机熔盐制成高度导电的聚合物纳米管复合材料等。...余下全文>>
六:纳米材料的研究成果
纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,主要如下:定向纳米碳管阵列的合成,由中国科学院物理研究所解思深研究员等完成。他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。并由此制备出纳米管阵列,其面积达3毫米×3毫米,碳纳米管之间间距为100微米。氮化镓纳米棒的制备,由清华大学范守善教授等完成。他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的半导体氮化镓一维纳米棒,并提出碳纳米管限制反应的概念。并与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长。准一维纳米丝和纳米电缆,由中国科学院固体物理研究所张立德研究员等完成。他们利用碳热还原、溶胶-凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体SiO2纳米电缆。用催化热解法制成纳米金刚石,由山东大学的钱逸泰等完成。他们用催化热解法使四氯化碳和钠反应,以此制备出了金刚石纳米粉。但是,同国外发达国家的先进技术相比,我们还有很大的差距。德国科学技术部曾经对纳米技术未来市场潜力作过预测:他们认为到2000年,纳米结构器件市场容量将达到6375亿美元,纳米粉体、纳米复合陶瓷以及其它纳米复合材料市场容量将达到5457亿美元,纳米加工技术市场容量将达到442亿美元,纳米材料的评价技术市场容量将达到27.2亿美元。并预测市场的突破口可能在信息、通讯、环境和医药等领域。总之,纳米技术正成为各国科技界所关注的焦点,正如钱学森院士所预言的那样:纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是21世纪的又一次产业革命。2011年10月19日欧盟委员会通过了对纳米材料的定义,之后又对这一定义进行了解释。根据欧盟委员会的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。1纳米等于十亿分之一米。在纳米尺度上,一些材料具有很多特殊功能。纳米材料已在人们的工作和生活中得到广泛应用。在欧盟委员会通过的纳米材料定义中,为什么限定基本颗粒大小在1纳米至100纳米之间?欧盟委员会认为,已知的大多数纳米材料的基本组成颗粒都在这一范围内,当然超出这一范围的材料也有可能具有纳米材料的特点。这一规定是为了使标准明确。为什么要求纳米材料的基本颗粒总数量在整个材料的所有颗粒总数中占50%以上?欧盟委员会认为,纳米颗粒比例过低会淹没整个材料的纳米特性,50%是一个比较合适的比例。另外,用纳米颗粒的数量比例而不是用质量比例作为纳米材料的衡量标准,更能体现纳米材料的特点。因为一些纳米材料密度很低,在质量比例较小的情况下已经能显现出明显的纳米材料特点。为什么纳米材料包括天然材料?欧盟委员会认为,纳米材料应按照基本组成颗粒的大小来定义,不管它是天然的还是人造的。实际上一些天然材料也具有人造纳米材料的特点。为什么把具有纳米结构的材料排除在纳米材料之外?欧盟委员会认为,尽管这种材料也具有纳米材料的特点,但还无法对纳米结构进行明确定义,因而不具有可操作性。......余下全文>>
七:纳米科技对未来社会发展的推动作用有哪些?
什么是纳米技术﹖既然纳米是一个非常小的长度单位,那么我想大家顾名思义立刻就想到纳米技术,当然就是跟这个非常非常小的尺度和微观世界打交道的这么一种科学技术。它所涉及的最小的尺寸,严格地讲就是单元的尺寸,一般是在1~100个纳米这么一个数量级。纳米科技基本上是对待这么一个数量级的 这么一个微观世界的这么一种科学技术。我想引用一下美国前总统克林顿在去年年初美国加州理工学院的一个讲话当中的三句话,这三句话非常形象地介绍了纳米是什么东西和它的前景。他说通过在原子分子水平上操纵、操控物质,去制造出强度是钢的十倍、重量只有钢的一个零头这么一个材料。还有,利用纳米技术,你可以 把美国国会图书馆的资料放在一个方糖大小的一个小盒子内。那如果变成中国版去说的话,就相当于把一部红楼梦放在一个针头大小的小区域内。他提到的第三句话是什么东西呢﹖他说癌细胞,现在治疗癌症一般都是很大的才能知道,如果是在三四个细胞的时候,你就能发现自然有利于治疗,这些实际上就是典型的纳米技术。 将来利用纳米技术有可能做到这一点。我们刚才引用的是一个美国人给纳米技术做的定义,似乎是有一点崇洋媚外。美国人在国家纳米技术启动计划中,讲到纳米技术的精髓就是从原子分子的精确操纵出发构建具有全新分子、排列形式的人造结构。换句话说纳米技术希望能够从一个一个原子,一个一个分子的操纵,摆弄一个原 子、一个分子,并用这种办法来做成一些材料、做成一些器件。大家注意,如果能够实现这一点的话,那可是件非常了不起的事情。为什么呢﹖我们大家在中学课本里就学到,物质是由原子、分子构成的,如果说我们真正能自如地摆弄原子、操纵原子、操纵分子的话。
大家可以想象一下,我们有可能做出一种万能制造机,一面放上各种各样的分子、原子,另一面想出来什么东西,就出来什么东西,比方说出来牛排、 出来面包。就像小时候听说过的聚宝盆,一敲它就出来。这个有没有可能呢﹖在将来的某一天,利用纳米技术或许可以实现这一点。因为从原理上讲是有可能的。实际上这方面的设想在1959年一个加州理工学院的教授就提出过一种设想。他说将来说不定有一天能实现这么一点。
作为纳米技术,本身它并不神秘,实际上从微米科技到纳米科技,应该说它是科学发展一个自然的结果。我们现在生活在微米时代。在微米时代我们用 计算机,还有录像机。大家看到的电视这些实际上都是微米科技的结晶。那么微米技术已经做到什么程度﹖微电子加工技术已经做到0.17~0.18微米这么一 个数量级,这个东西就是那个奔腾芯片。实际上实验室里已经做到0.1个微米以下,也就是100个纳米左右。也就是说,从尺度上来讲,微米技术已经逐渐进入到纳米尺度。所以从某种定 义上讲,从微米科技到纳米科技是科学发展的必然结果。或许我们可以畅想将来的某一天出现更新的科技——皮米科技,也完全有可能的。
还有大家都知道陶瓷,陶瓷材料比较容易碎,碗掉到地上通常都会摔碎。但你用纳米材料做成陶瓷的话,丁自然摔不碎,同时它又特别耐高温。当然这 个东西我们去做碗没必要,你的碗永远摔不碎的话那就麻烦了,做碗的人很可能就会失业,而且女性的购买欲自然也就无法得到满足,这是很重要的。又比如说汽车的发动机,如果采用纳米材料,就可以减轻重量、省油,还可以减轻环境污染问题。为什么纳米技术会有这么一种奇特的性质﹖简言之有几个大效应。比方说表面效 应、表面镜面效应,还有量子效应、小子粒效应等等。由于这些现象、这些效应的存在导致纳米材料、纳米尺寸的结构具有一些特别的性质。
我想需要特别指出的是,纳米科技可以使人们传统思维方法......余下全文>>
八:纳米材料到底是什么材料?
纳米材料到底是什么? 发布时间: 2008-5-16 15:10:14 浏览次数: 227 日本厚生劳动省2008年4月4日召开了审议纳米材料安全性等问题的第二次联合研讨会(会议主持:中央劳动灾害防止协会日本生物鉴定研究中心主任福岛昭治)。此次共举办了“防止劳动者曝露于对人体有害性尚不明确的化学物质中”和“关于纳米材料安全性”两场研讨会。此次的主题是“纳米材料到底是什么?”。另外还公布了纳米材料的用途及产量等基础数据,并做了现状报告,还对将在今后研讨会上讨论的基础数据进行了确认。 关于“纳米材料的范围”,日本厚生劳动省负责人表示,一般以ISO(国际标准化委员)TC229委员会的方案为基础将其定义为“一维尺寸小于100nm的材料”。另外表示,美国、英国、澳大利亚等的相关行政部门也基本采用这一定义。还指出了纳米材料凝聚在一起达到μm尺寸时如何界定的问题。 物质与材料研究机构纳米物质实验室富勒烯工学小组对“纳米材料的性质”进行了解释。该小组指出纳米物质在电子状态变化时会发生异常现象,其化学性质、力学性质及电性都会发生异常。比如,碳纳米管单层品的表面积计算值约为1300m2/g,多层品约为20~180m2/g,差异非常大。电性方面,当半导体纳米微粒的微粒径为4.5nm时变成红色,3.5nm时变成绿色,2.5nm时变成蓝色。这些便是普通材料中难以想象的“纳米尺寸效应”。 轮胎用碳黑的用量最多 关于“纳米材料的用途及产量”,平成19年度(2007年度)实施过调查的东丽经营研究所(千叶县浦安市)公布了调查结果。主要纳米材料的用量排名依次是,碳黑(碳)为83万t,二氧化硅为1万3500t,氧化钛为1250t,氧化锌为480t。纳米技术中备受关注的碳纳米纤维为60~70t,多层碳纳米管为60t,富勒烯为2t,单层碳纳米管为0.1t。其中碳黑在用量中占到约97.8%,主要用于轮胎。二氧化硅的主要用途是硅橡胶,占到57%。氧化钛有60%用于化妆品。 日本经济产业省成立的纳米技术产业推进协会(NBCI)介绍了“纳米材料的开发状况”。富勒烯已被体育用品等采用,目前的研发项目正在开拓其在燃料电池、太阳能电池、バ生物材料药品以及化妆品等领域的用途,并且正在推进将单层碳纳米管作为晶体管、燃料电池及储氢材料的研究开发。 在因可以直接将纳米材料涂在皮肤上而备受瞩目的化妆品方面,日本工业联合会以“纳米原料与化妆品”为题做了报告。面向化妆品制造商与进口销售商的问卷调查结果显示:以纳米材料为原料的120家企业中,使用氧化钛的有115家(96%),使用氧化锌的有72家(60%),使用二氧化硅类材料的有26家(22%)。主要用途是防晒及当作粉底。氧化钛和氧化锌在40年前曾被配合用来防紫外线,由于微粒径越小,功能越高,因此逐渐变成了纳米材料。 日本劳动安全卫生综合研究所介绍了“纳米材料的检测与管理方法”。计测空气中纳米材料微粒的方法多采用实时计测微粒数量及粒径分布的气溶胶检测法。该检测法检测光散射程度。与分级设备配合使用。而凝聚状态、形状及成分等主要采用基于电子显微镜的观察法,虽然可以精密检测,但无法实时计测。 专业领域各不相同的各委员向各介绍方提出疑问,确认了将成为今后审议基础的基础数据,在达成共识之后,研讨会才落幕闭会。
九:学习纳米材料专业将来可以从事哪些方面的工作?
纳米技术、信息技术及生物技术被誉为本世纪社会经济发展的三大支柱。
该专业的毕业生一般都可以在科研院校及纳米材料、黏合剂、涂料、电镀、陶瓷等相关领域从事相关产品开发、生产和检测等工作。与材料专业方面的学生基本有着相似的职业发展道路。
从专业网站招聘信息中可以发现,所招聘的纳米材料人才主要承担工作任务为纳米材料表征、石墨烯及碳纳米材料研发、纳米材料改性、纳米材料合成、无机纳米材料制备以及交叉学科纳米材料应用。
总体而言,纳米材料专业同学可以有以下去处: 一是选择继续出国深造或者进高校、研究院从事纳米材料研发工作,这是纳米材料人才继续本领域内研究的主要途径。二是选择进入纳米材料行业企业。三是进入传统材料相关企业。