遗传算法研究

一:遗传算法的发展过程?

遗传算法定义  遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 [编辑本段]遗传算法特点  遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:

1、 遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际值本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。

2、 遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。

3、 遗传算法使用多个点的搜索信息,具有隐含并行性。

4、 遗传算法使用概率搜索技术,而非确定性规则。 [编辑本段]遗传算法的应用  由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:

1、 函数优化。

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。

2、 组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经......余下全文>>

二:我以后要研究遗传算法,请问大学读什么专业?

楼主,我建议是那种电气工程自动化类的专业。

现在电气相关专业都需要一门:自动控制系统,他要学MATLAB仿真,这是遗传算法的基础。遗传算法需要较高的程序编程能力,GAOP工具箱使用能力,一般的电气相关专业都有学习。

三:遗传算法的改进研究,先做一个具体应用在用改进算法对比

我不知道你具体做的是什么,你的问题我试着读了几次,没读懂,哈哈!不过遗传算法的改进。。。本科毕业设计。。。我的理解是具体可以改进一下“变异”的几率。。。

四:第9章怎样研究算法遗传算法示例练习题答案解析

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点1.遗传算法从问

五:matlab程序Pareto 遗传多目标算法

您好,GA不论是在应用、算法设计上,还是在基础理论上,均取得了长足的发展,应用也非常广泛.本文通过对基本遗传算法的研究,以及对其在多目标优化问题上的实现,在遗传算法领域进行探讨,并通过程序来验证.在多目标优化问题的研究中,所采用的一些方法在一些算例中获得了比较好的Pareto解集.

遗传算法作为求解全局优化问题的有力工具之一,应用十分广泛,目前主要应用在以下几个领域:

(1)基于遗传算法的机器学习(GeneticBaseMachineLearning).这一新的学习机制给解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。

(2)遗传算法与其他计算智能方法的相互渗透和结合.

(3)并行处理的遗传算法的研究十分活跃.这一研究不仅是对遗传算法本身的发展,而且对新一代智能计算机体系结构的研究都是十分重要的.(4)遗传算法在数据挖掘(DataMining)领域中的应用。

六:怎样研究算法

算法是一个体系。为什么说研究算法的都是高学历高智商的人呢,就是因为搞算法不是一蹴而就的。

首先你不要心急,这东西真没有捷径。

我给你说说大概的步骤吧。

首先要学习数学,初等数学啦,高等数学啦,甚至说是概率,几何,代数,离散数学,数学分析,数学建模,这些都要多多少少的涉及。

这时候很多人就烦了,说搞算法,你让我学什么数学啊。

确实,你学完这些课,你还不能编自己的算法,但是这里面很多算法的思想非常重要,你没见过你就不会用,你就不会分析,所以这些课学好了都不行,还要学精。

再者就是做项目,结合项目来不断见识算法和思想。

我说说我用了几年吧,我大三开始好好学习的,两年时间完成了数学课程的学习,之后读研,三年时间主要是用本科学的数学课程来进行算法分析,编写算法。

研究生一毕业就去工作,直接找的算法工程师的工作,工作刚开始比较难,强度稍微大一点,不过好在有基础,所以大概一个月就上手了。

总之怎么研究算法,这东西不能一蹴而就,你要耐下心来学基础课程。

如果你还没考大学,你去考数学专业或者计算机专业或者金融专业。

如果你已经毕业了,可以考这几个方向的研究生。

七:用遗传算法求解配送路线优化问题时,交叉率和变异率怎么设定? 50分

以下是问题的详细回答,文字有些长,请你耐心看希望对你有帮助。

传算法可以很好的解决物流配送路径优化问题。但是由于遗传算法交配算子操作可能会使最好解遗失,所以将遗传算法和模拟退火算法结合来解决这一问题。实验结果表明:用这种有记忆功能的遗传模拟退火算法求解物流配送路径优化问题,可以在一定程度上解决上述问题,从而得到较高质量的解。

一 物流系统简介

物流系统是以客户满意为目标,根据顾客的要求条件,从生产地到销售地,在仓储、包装、配送、运输、装卸等环节有机整合所形成的实物、服务以及信息的流通过程所组成的一个复杂的系统。

物流配送是现代化物流管理中的一个重要环节。它是指按用户的定货要求,在配送中心进行分货、配货,并将配好的货物及时送交收货人的活动。本文讨论物流配送中的路径优化问题,并且通过结合模拟退火算法来解决遗传算法在解决此类问题时的不足。

二 系统模型设计

物流配送路径优化问题可以按这样的情况进行描述:从某物流配送中心用多辆配送车辆向多个客户送货。每个客户的位置和货物需求量一定,每辆车的载重量一定,配送时间一定,其一次配送的最大行驶距离一定。要求合理安排车辆配送路线,使目标函数得到最优。并满足以下条件:(1)每条配送路径上各客户需求量之和不超过配送车辆的载重量;(2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离;(3)每次配送的货物不能超过客 户要求的时间; (4)每个客户的需求必须满足,且只能由一辆配送车送货。设配送中心需要向k个客户送货,每个客户的货物需求量是g (i=1,2,…..k),每辆配送车的载重量是q,且g 下面建立此问题的数学模型:c 表示点i到点j的运输成本,t 表示从i到s所允许的最大时间。配送中心编号为0,各客户编号为i(i=1,2,….,k),定郸变量如下:

x = 1 或 0(其中,当x 等于1时表示车s由i驶向j;0表示没有该路径。)。

y = 1 或 0(其中,当y 等于1时表示点i的货运任务由s车完成;0表示没有。)。

根据上述变量定义可得到的数学模型如下所示:

min Z = ; (1) ;(2)

= 1或 m(其中,当 i = 1,2,……,k时为1,否则为0。);(3)

= y ,j = 1,2,……,k;s = 1,2,……,m; (4)

= y ,i = 0,1,……,k;s = 1,2,……,m; (5)

t > 0;且t t , j = 1,2……,s-1; (6)

上述模型中,式(2)为汽车容量约束;式(3)保证了每个客户的运输任务仅由一辆车完成,而所有运输任务则由m辆车协同完成;式(4)和式(5)限制了到达和离开某一客户的汽车有且仅有一辆。式(6)对配送时间做了约束,即物品到达指定地点的时间不能大于其最大允许时间。

上述模型中还要考虑时间问题,即每个客户对所送物品的时间要求各不相同,故需加入一个时间参数t 。对每个运输路径都加上时间参数t (t 的值可由客户需求中得知,并记录到数据库。),在每个规定的时间内(如一个月),优先配送t 值小的物品,每次在用遗传算法求解前,遍历规定时间内的所有t ,按照t 值由小到大排列染色体,然后再求出最优解,根据最优解制定配送方案。

三 引入退火算法改进求解过程

针对遗传算法的一些不足,将模拟退火算法与之结合,并加入记忆装置,从而构造了物流配送路径优化问题的一种有记忆功能的遗传模拟退火算法。该算法的特点是扩大了原有遗传算法的搜索邻域,在一定概率控制下暂时接受一些恶化解。同时利用记忆装置保证了在一定......余下全文>>

扫一扫手机访问

发表评论