一:鸡兔同笼应用题
典型应用题之鸡兔同笼
一,基本问题
"鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路.
例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只
解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是
244÷2=122(只).
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数
122-88=34,
有34只兔子.当然鸡就有54只.
答:有兔子34只,鸡54只.
上面的计算,可以归结为下面算式:
总脚数÷2-总头数=兔子数.
上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.
还说例1.
如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了
88×4-244=108(只).
每只鸡比兔子少(4-2)只脚,所以共有鸡
(88×4-244)÷(4-2)= 54(只).
说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式
鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了
244-176=68(只).
每只鸡比每只兔子少(4-2)只脚,
68÷2=34(只).
说明设想中的"鸡",有34只是兔子,也可以列出公式
兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.
假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法".
现在,拿一个具体问题来试试上面的公式.
例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支
解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚.
现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有
蓝笔数=(19×16-280)÷(19-11)
=24÷8
=3(支).
红笔数=16-3=13(支).
答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是
8×(11+19)=240.
比280少40.
40÷(19-11)=5.
就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3.
30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.
实际上,可以任意设想一个方......余下全文>>
二:鸡兔同笼类型的应用题该怎么解答
已知总头数和总脚数,问鸡兔各几只公式:
兔子数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
鸡数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
方法一: 设全部都是鸡
总脚数将是2个总头数,多出来的实际脚数=实际脚数-2个总头数实际脚数多出来,就是因为有兔子,每多一只兔子,就多2只脚,兔子数=实际多出来的脚数有多少个2
兔子数=实际总脚数的一半-总头数
方法二:假设都是兔子,
总脚数将=4个总头数,实际脚数比都是兔子少,因为有鸡,每只鸡比兔子少2只脚
实际脚数比都是兔子少,少了多少个2,就是鸡数
鸡数=2个总头数-实际总脚数的一半
抬腿法
方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有总脚数一半(只)脚。笼子里的每只兔就比鸡的脚数多1,这时,脚与头的总头数之差=总脚数一半(只)脚-总头数=就是兔子的只数。
方法二
假如鸡与兔子都抬起两只脚,就是说鸡浮在空中没有脚,兔子只有2只脚,还剩下(总脚数-两个头数)只脚 , 这时地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有兔子只数=(总脚数-两个头数)的一半=实际总脚数的一半-总头数。
方法三
我们可以先让兔子都抬起2只脚,那么就有2个总头数只脚,脚数和原来差总脚数-2个总头数只脚,这些都是每只兔子抬起2只脚,一共抬起(总脚数-2个总头数)只脚,得到兔子只数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数。
方法四
让所有兔子抬起两条前腿像鸡一样只有两条后腿着地,其实就是变成鸡一样的只有2只脚,就会有2个总数的脚,少的脚数=总脚数-2个总头数=2个兔子数
兔子数=实际总脚数的一半-总头数
方法五
假设法(通俗)
假设鸡和兔子都抬起一只脚,鸡成金鸡独立,兔子变成三脚兔,笼中站立的脚=实际总脚数-总头数(只)
然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,是屁股坐在地,只剩下用两只脚站立的兔子,剩下脚数=实际总脚数-2个总头数(只),兔子数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数
鸡下翅膀法
让所有鸡把翅膀放下当成脚,其实就是变成兔子一样的4只脚,就会有4个总数的脚,多出来的脚=4个总头数-总脚数=2个鸡数
鸡数=2个总头数-实际总脚数的一半
方程法
鸡数=2倍总头数-总脚数的一半
兔数=总脚数的一半-总头数
方法一
假设其中的兔子数是x
那么鸡数就是总头数-x
总脚数=4x+2(总头数-x)
总脚数=2x+2总头数
2x=总脚数-2总头数
x=(总脚数-2总头数)/2
x=总脚数/2-总头数
方法二
假设其中的鸡数是x
那么兔子数就是总头数-x
总脚数=2x+4(总头数-x)
2x=4总头数-总脚数
x=2总头数-总脚数/2
已知总头数和鸡腿比免腿多的数, 问鸡兔各几只
鸡数=(4倍总头数+相差脚数)/6
兔数=总头数-鸡数=总头数-(4倍总头数+相差脚数)/6=(2倍总头数-相差脚数)/6
鸡脚数=2倍鸡数
兔数=总头数-鸡数
兔脚数=4倍兔数=4倍(总头数-鸡数)=4倍总头数-4倍鸡数
相差脚数=鸡脚数-兔脚数=2倍鸡数-(4倍总头数-4倍鸡数)=6倍鸡数 -4倍总头数
6倍鸡数=4倍总头数+相差脚数
鸡数=(4倍总头数+相差脚数)/6
兔数=总头数-鸡数=总头数-(4倍总头数+相差脚数)/6=(2倍总头数-相差脚数)/6
假设其中的兔子数是x
那么鸡数就是总头数-x
相差脚数=鸡脚数-兔脚数=2(总头数-x......余下全文>>
三:小学鸡兔同笼类应用题
典型应用题之鸡兔同笼 一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只 解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34, 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的"鸡",有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式. 例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支 解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有 蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支). 红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是 8×(11+19)=240. 比280少40. 40÷(19-11)=5. 就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3. 30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上......余下全文>>
四:类似鸡兔同笼的应用题
把一个三轮车和一个自行车看成一个组合车,则1辆组合车有轮子5个
所以组合车有75÷5=15辆
即自行车和三轮车各15辆
祝你开心
五:鸡兔同笼的应用题 要答案 要算式的
题呢?