一:2013年教育部审定人教版小学数学六年级下册《用比例解决问题教案》
教学目标:
1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。
3、培养学生良好的解答应用题的习惯。
教学重点:用比例知识解答比较容易的归一、归总应用题。
教学难点:正确分析题中的比例关系,列出方程。
教学过程:
一、复习铺垫,引入新课。(课件出示)
1、判断下面每题中的两种量成什么比例?
(1)速度一定,路程和时间.
(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.
(5)全校学生做操,每行站的人数和站的行数.
2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?
(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。
(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。
(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。
3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?
(1)学生自己解答,然后交流解答方法。
(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
二、探究新知。
1、教学例5
(1)学生再次读题,理解题意。思考和讨论下面的问题:
① 问题中有哪三种量?哪一种量一定?哪两种量是变化的?
② 它们成什么比例关系?你是根据什么判断的?
③ 根据这样的比例关系,你能列出等式吗?
(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(3)根据正比例的意义列出方程:
12.88=χ10
解:设李奶奶家上个月的水费是χ元。
8χ= 12.8×10
χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元。
(4)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)
3、教学例6
(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)
(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?
(3)学生独立解答。
(4)指名板演,全班交流。
三、巩固提高。
做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
四、课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?
五、课堂作业。
教科书P62练习九第3、7题。...余下全文>>
二:用正比例知识解决问题的步骤是什么 5分
学习正、反比例应用题能进一步加深同学们对数量关系的分析和认识,培养学生分析问题和解决问题的能力,它同时渗透了一定的函数思想,是同学们今后学习初中各门知识的基础。
正、反比例应用题的学习是在学习归一问题与归总问题基础上进行,同学们只要利用好归一问题与归总问题的知识要点就能学习好正、反比例应用题。
例如:一列火车4小时行240千米,照这样的速度,7小时行多少千米?“照这样的速度”是归一问题的典型标志。这里的每小时平均速度就是这道题里的“单一量”。照这样的速度,就是以“单一量”为标准,再求出7小时所行的路程是60×7=420(千米)。因为4小时行240千米,所以,每小时平均速度是240÷4=60(千米)。
再例如:一项工程8个人22天可以完工,如果11个人做几天完工?这是一道归总问题,“8个人22天可以完工”依据这句话可以把整个工程看成8×22份,这个总份数是不变的,根据这个不变的总数,我们用8×22的积除以11,就得出了要求的问题。
我们学习正、反比例应用题正是利用这个不变的量来解决问题的。
同学们要正确理解并紧紧抓住正、反比例的意义,首先要找出应用题中哪两种数量是相关联的量,“谁”是一定的量。如果两种相关联的量相除后等于一定的量,即y/x=k(一定),那么这两种相关联的量是成正比例的量,它们之间的关系是正比例关系即归一问题;如果两种相关联的量相乘后等于一定的量,即x·y=k(一定),那么这两种相关联的量是成反比例的量,它们之间的关系是反比例的关系,即归总问题。
例1:一列火车4小时行240千米,照这样的速度,7小时行多少千米?题中路程和时间是两种相关联的量,速度是一定的量,(照这样的速度就是说速度是一定的)因为路程/时间=速度(一定),所以路程和时间是成正比例的量,它们之间的关系是正比例关系,说明例题是用正比例解答的应用题。
例2:一辆汽车从甲地开往乙地,每小时行驶60千米,4小时到达。如果要3小时到达,每小时需行驶多少千米?题中速度和时间是两种相关联的量,路程是一定的量(就是说甲乙两地的路程是一定的),因为速度×时间=路程(一定),所以速度和时间是成反比例的量,它们之间的关系是反比例关系。说明例题是用反比例关系解答的应用题。
接下来就要根据正反比例的意义,结合题意寻找等量关系式,列方程解答应用题。如果两种相关联的量是成正比例关系,那么这两种相关联的量中任何两个相对应的数的比是相等的,使用未知数x列出两个相等的比;如果两种相关联的量是成反比例关系,那么这两种相关联的量中任何两个相对应的数的积是相等的,使用未知数x列出两个相等的乘法,当然。用比例来解答有关应用题了,先写“解”,后设未知量为x,找等量关系列方程、解方程并检验。在检验时,一是要把求得的未知数的值代入原方程,看方程左右两边的值是否相等,二是要检验求得的未知数的值是否符合题意。
例1的解法:
解:设甲乙两地间的公路长x千米,列方程:240:4=x:7,解方程得:x=420,检验(略),答:甲乙两地间的公路长420千米。
例2的解法:
解:设每小时需行驶x千米,列方程:4x=70×5解方程得x=87.5,检验(略),答:每小时需行87.5千米。
所以说,联系以前的学习,在正、反比例应用题的学习中,根据正、反比例的意义,准确判断两种相关联的量是正比例关系还是反比例关系是解题的基础,寻找等量关系和找准两种相关联的量中两组相对应的数是关键,应用方程来解答这类应用题是它的重要途径。...余下全文>>
三:用正比例知识解决问题的应用题有哪些
用正比例知识解决问题的应用题,示例:用同样的砖铺地,铺18平方米要用618块砖.如果铺地24平方米,要用多少块砖? 解:设要用x块砖,由题意可得:
18:618=24:x
18x=618×24
18x=14832
x=824
答:要用824块砖。
四:用比例的知识可以解哪些简单的实际问题
《用比例解决问题》是本单元最后一部分知识是学习了正比例和反比例关系后的实践应用。本节课,在教学中教师力求通过知识的迁移,结合学生的生活经验,让学生借助函数关系间变量的对应规律,正确判断两种相关联的量之间的依存关系,根据它们的正、反比例关系,列出相应的比例式,解决问题。在实际教学中,我把握本节课的重点,采用开放式的教学方法,将课堂的主动权放手学生,让学生在自己探索、独立尝试、同桌交流、质疑辨析、对比归纳、概括小结、拓展延伸中轻松,高效地完成了教学任务,反思本节课的成功之处,我有以下三点感悟:一、课堂永远是无法完全预设的本节课,课前的复习按照预期的设计顺利完成。当我出示例5后,学生默读题目,独立分析后,我鼓励学生自主探索,独立尝试解决问题,不到1分钟,同学们的小手就此起彼伏地浮现在桌面上,个个跃跃欲试,当2名学生将自己的思索展现在黑板上时,我不禁一惊,这两位学生竟然用了不同的解题方法,除了以前学过的归一、归总法,又出现了今天的新课方法,按我预先设计的方案,学生用以前的方法解决后,我将会出示一个自学提示,引导学生按步骤,按思路来用比例解决,学生会顺理成章地理解题意,学会用比例解决。没想到学生自己就能列出正确的比例,我顺势请板演的同学到黑板前讲一讲自己的思考,真没想到,这个孩子讲得头头是道,把我的“活”儿抢了。同学们听了她的讲解,顿时茅塞大开,把我连续出示的两个基本练习做得漂漂亮亮。课后我反思这个环节,异常感慨,本来以为丝丝相扣的自学提示,会让学生在老师无形的指挥下,理解正比例应用题的思考方法,没想到一个不到1分钟的独立尝试,就让学生破解了我的预设,而后我的顺势相邀——请学生讲解,却让课程呈现了更为灿烂的一幕。课堂永远是无法预设的,当出现与预设不相符的状况时,教师一定要会调控,得当的调节能让课堂更加精彩。二、错误点就是生成点在进行变式练习时,同学们争先恐后地上讲台展示,马彪同学出现的错误给课堂带来了新的生成,我们习惯应用“总价÷数量=单价”,当单价一定时,可以列成正比例式,而马彪同学却将等式的左边写成“数量÷总价”,班内同学议论纷纷,我借势引导学生,抓住正比例关系的对应量对等的要点,使一个比例式拓展成了两个,让学生明白了,两个变量之间的对应规律和依存关系。课堂中无意的错误点,生成了新的知识点,让学广开世面,更深层次地理解最简单的函数知识。三、真实的课堂,回生阻道我喜欢真实的课堂,这节公开课,课前我一点儿都没有提示前面的知识。课堂上,当提问正比例和反比例关系时,很多学生都有些生疏,对量与量之间的变化规律有些陌生,经过老师提示后,学生们才回想起前面的概念,这部分所用的时间比预先多用了1分钟左右,虽然是大约1分钟的时间,却给我敲响了警钟,知识一定要常温常故,尽量避免学生的回生,更要防止知识的断层。反思这节课,给我带来了很多启示,一位好的数学老师必须具备全面、科学调控课堂的能力,及时抓住课堂的生成点,适时点拨,拓展延伸。与此同时,教师还不能忽视知识的前后联系,不能让知识搁浅,做好做实日常工作,让数学思想、数学方法、数学知识扎根学生心中。
五:用比例解决问题的小知识
《用比例解决问题》教学设计
马燕群
教学内容:用比例解决问题(1) P59 例5
教学目标:1、能正确判断问题中数量之间的比例关系。
2、会正确利用比例知识解决问题。
教学重难点:能正确判断问题中数量之间的比例关系并正确解决实际问题。
教具:小黑板
教学过程:
一、 精彩导入 :
判断下面各题中的两种量成什么比例?为什么?
(1)速度一定,汽车行驶的路程和时间。
(2)每吨水费是2元,用水的总吨数和总的水费。
二、探究新知:
阅读课本第59页,回答下列问题。
1、找出例5中的已知条件和所求问题:(引导学生读题,理解题意)
2、用以前所学的方法解答。(生自主解答)
3、用比例知识解答。(师点拨,生思考,一生回答)
(1)问题中有两种相关联的量是:( )和( )。
(2)请摘录这两种量对应的数据。(未知量用x表示)
张大妈家:吨水,水费是
李奶奶家:吨水,水费是
(3)这两种量成什么比例关系?为什么? (小组合作,讨论交流)
(4)根据这样的比例关系,请列出等式。(先列式,组间交流,最后计算)
4、用比例知识解答小精灵提出的问题。
仔细分析两种量的比例关系。(小组讨论两种量之间的关系?并说明理由。看哪一组合作的又快又好。)
三、巩固提升
1.小兰的身高1.5米,她的影子长是2.4米。如果同一时间、同一地点测得一棵树的影子长4米,这棵树有多高?
2.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少时间?
3.学校用同样的方砖铺地,铺5平方米,用了方砖120块,照这样计算,再铺23平方米,一共用了这种方砖多少块?
四、课堂小结:质疑、解疑。
五、作业设计:巩固提高的三道题目。
拓展题:张师傅接受了生产一批零件的任务。他计算了一下,如果每小时生产30个,一天(8小时)可以完成任务。由于情况变化,他的任务增加到280个,他怎样做才能在当天完成生产任务?
六、教学反思
六:正比例和反比例的区别与联系 教案教学设计
正 比 例 和 反 比 例
第2课时 (总第9课时)
一、教材分析
【复习内容】
教科书第12册第94页“整理与反思”和95-96页的“练习与实践”5-10
【知识要点】
1.正比例和反比例的区别与联系:
相同点不同点
特征关系式
正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定)
反比例两种量中相对应的两个数的积一定x×y= k(一定)
与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。
2. 图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺 或 =比例尺
【教学目标】
1.使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2.使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3.使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正 、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
二、教学建议
复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。
复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。
三、知识链结
1.正比例和反比例 (教科书六下 P62 例1、例2 、 P63 例3)
2.比例尺 (教科书六下 P48 例6 、 P49例7 )
四、教学过程
(一)正比例和反比例的意义。1.教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)
2.小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定 。
3.举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
(二)练一练
1.下表中两种量成比例吗?为什么?
加数122.51424
加数1827.5166
总吨数422610024.4
余下吨数41259923.4
因数35320
因数159101.5
学生说一说每张表中, 第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。再作出相应的判断
2.完成教科书95页“练习与实践”
第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。
第8题:引导学生列举几组对应的数......余下全文>>
七:如何评价用比例知识解决问题练习课教学组织形
《用比例解决问题教学设计》
河小 张红梅
教学目标:
知识与技能:
1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。
2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的分析、判断和推理能力。
过程与方法:
经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。
情感态度和价值观:
感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。
教学重点:用比例知识解决实际问题
教学难点:能够正确分析题中的比例关系,列出方程
一、复习铺垫,引入新课。
师:同学们,我们已经学习了哪两种比例?好,下面我们就来回忆一下有关正、反比例的知识。
师:你能准确地判断两个量之间的关系吗?下面我们来进行一个回合的抢答比拼:我会判断。(抢答要求:举手证明你有勇气,你会做,你没有抢答到但是你的手势判断正确,你仍然是最棒的。)
出示:下面每题中的两种量成什么比例?
(1)速度一定,路程和时间.
(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.
(5)全校学生做操,每行站的人数和站的行数.
二、探究新知
(一)用正比例的知识解决问题(探究例5)1、师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,那么,学习了正反比例到底有什么用呢?(学生交流)来我们一起看看这节课的学习目标吧!
出示学习目标:
1、进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。
2、能利用正反比例的意义解答比较简单的应用题,掌握用比例知识解答问题的步骤和方法。
2、过渡语:学习知识就是为了解决问题,你能运用学过的知识去解决生活中的问题吗?看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)
(让学生读李大妈的话进行体会,主要让学生体会到通过李大妈叙述的两个条件挖出隐含条件每吨水的价格以及水费和用水吨数之间的联系,感受水的单价一定)
师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?看谁最先帮李奶奶解决这个问题!
学生自己解答,然后交流解答方法。
师:除了这种方法我们还可以用什么方法来解决了?
生:比例
3、引入新课:对,像这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
4、师:通过大家的表情,好像老师不用教,大家都敢尝试。大家敢不敢自己试试?(相信学生,鼓励他们运用已有的知识去获取新的知识,培养他们主动学习的意识,培养学生的自学能力体现教是为了不教。)
呈现自学提示:
(1)题中有哪两种相关联的量?
(2)这两种相关联的量成什么比例关系?你是怎么判断的?
(3)你能根据这样的比例关系列出一个含有未知数的比例式吗?
5、学生交流自学结果,相互补充,呈现一个完整的解答过程。、
师:谁来说说你是怎样用比例知识来解决问题的?
根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
6、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
7、师:比较这两种解法,你们觉得哪种方法更好理解......余下全文>>
八:正比例和反比例的区别与联系 教案教学设计
正 比 例 和 反 比 例
第2课时 (总第9课时)
一、教材分析
【复习内容】
教科书第12册第94页“整理与反思”和95-96页的“练习与实践”5-10
【知识要点】
1.正比例和反比例的区别与联系:
相同点不同点
特征关系式
正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定)
反比例两种量中相对应的两个数的积一定x×y= k(一定)
与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。
2. 图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺 或 =比例尺
【教学目标】
1.使学生进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2.使学生通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3.使学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,使学生感受正 、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
二、教学建议
复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。
复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。
三、知识链结
1.正比例和反比例 (教科书六下 P62 例1、例2 、 P63 例3)
2.比例尺 (教科书六下 P48 例6 、 P49例7 )
四、教学过程
(一)正比例和反比例的意义。
1.教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)
2.小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定 。
3.举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
(二)练一练
1.下表中两种量成比例吗?为什么?
加数122.51424
加数1827.5166
总吨数422610024.4
余下吨数41259923.4
因数35320
因数159101.5
学生说一说每张表中, 第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。再作出相应的判断
2.完成教科书95页“练习与实践”
第7题:让学生先独立做,再讲评。讲评时注意帮助学生解决困难。
第8题:引导学生列举几组对应的数值再具体分......余下全文>>