脂质体的制备方法包括

一:脂质体的制备的制备方法包括哪些

脂质体的制备的制备方法包括哪些

1.脂质体概述 1965 年,英国学者Bangham 和Standish 将磷脂分散在水中进行电镜观察...

2.脂质体制备方法分类及其介绍 脂质体是由磷脂分子在水相中通过疏水作用形成的

二:脂质体的制备方法

注入法、薄膜分散法、超声波分散法、逆向蒸发法。脂质体作为药物载体的临床应用1、抗肿瘤药物载体:阿霉素脂质体和顺铂脂质体已在国外上市。2、抗寄生虫药物载体:苯硫咪唑脂质体和阿苯达唑脂质体等。利用脂质体的被动靶向性,提高药物的生物利用度,减少用量,降低毒副作用。3、抗菌药物载体:庆大霉素脂质体和两性霉素B,可减少药物的耐药性,降低心脏毒性。4、激素类药物载体。给药途径脂质体的给药途径主要包括(1)静脉注射;(2)肌内和皮下注射;(3)口服给药;(4)眼部给药;(5)肺部给药;(6)经皮给药;(7)鼻腔给药。体内过程脂质体与细胞之间作用的主要形式包括膜间转运(细胞膜的脂质交换)、接触释药、吸附、融合和内吞。脂质体具有类细胞结构,进入体内主要被网状内皮系统吞噬而激活机体自身的免疫功能,并改变包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数、减少药物的治疗剂量和降低药物的毒性。新型靶向脂质体1、前体脂质体:将脂质吸附在极细的水溶性载体如氯化钠、山梨醇等聚合糖类(增加脂质分散面积)制成前体脂质体,遇水时脂质溶胀,载体溶解形成多层脂质体,其中载体的大小直接影响脂质体的大小和均匀性。前体脂质体可预防脂质体之间相互聚集,且更适合包封脂溶性药物。2、长循环脂质体: 经过PEG修饰,以增加脂质体的柔顺性和亲水性,通过单核-巨噬细胞系统吞噬,减少脂质体脂膜与血浆蛋白的相互作用,延长循环时间,称为长循环脂质体(long-circulating liposome)。长循环脂质体有利于肝脾以外的组织或器官的靶向作用。同时,将抗体或配体结合在PEG的末端,既可保持长循环,又可保持对靶体的识别。3、免疫脂质体:脂质体表面联接抗体,对靶细胞进行识别,提高脂质体的靶向性。如在丝裂霉素(MMC)脂质体上结合抗胃癌细胞表面抗原的单克隆抗体3G 制成免疫脂质,在体内该免疫脂质体对胃癌靶细胞的M85杀伤作用比游离MMC提高4倍。4、热敏脂质体:利用在相变温度时,脂质体的类脂质双分子层膜从胶态过渡到液晶态,脂质膜的通透性增加,药物释放速度增大的原理制成热敏脂质体。例如将二棕榈酸磷脂(DPPC)和二硬脂酸磷脂(DSPC)按一定比例混合,制成的3H甲氨喋呤热敏脂质体,再注入荷Lewis肺癌小鼠的尾静脉后,再用微波加热肿瘤部位至42℃,病灶部位的放射性强度明显的高于非热敏脂质体对照组。5、pH敏感性脂质体:由于肿瘤间质的pH比周围正常组织细胞低,选用对pH敏感性的类脂材料,如二棕榈酸磷脂或十七烷酸磷脂为膜材制备成载药脂质体。当脂质体进入肿瘤部位时,由于pH的降低导致脂肪酸羧基脂质化成六方晶相的非相层结构,从而使膜融合,加速释药。总之,脂质体作为药物载体是临床应用较早,发展最为成熟的一类新型靶向制剂。美国FDA批准上市的脂质体产品有两性霉素B、阿霉素脂质体。批准进入临床试验的脂质体有丁胺卡钠霉素。未来脂质体的研究主要集中在以下三个方面:1、膜结构与载药性质之间的关系;2、脂质体在体内的靶向特性;3、在体外培养中将基因和其他物质导入细胞内有望成为基因药物载体。脂质体是由脂双分子层组成的颗粒,可介导基因穿过细胞膜。通过脂质体介导比利用病毒转导进行基因转移具有以下明显的优势:①脂质体与基因的复合过程比较容易;②易于大量生产;③脂质体是非病毒性载体,与细胞膜融合将目的基因导入细胞后,脂质即被降解,无毒,无免疫原性;④DNA或RNA可得到保护,不被灭活或被核酸酶降解;⑤脂质体携带的基因可能转运至特定部位;⑥体外和体内试验都表明,接近染色体大小的DNA片段也能被转运至宿主基......余下全文>>

三:请教高人指点一下脂质体怎么制备

脂质体怎么制备

注入法、薄膜分散法、超声波分散法、逆向蒸发法。

脂质体作为药物载体的临床应用

1、抗肿瘤药物载体:阿霉素脂质体和顺铂脂质体已在国外上市。

2、抗寄生虫药物载体:苯硫咪唑脂质体和阿苯达唑脂质体等。利用脂质体的被动靶向性,提高药物的生物利用度,减少用量,降低毒副作用。

3、抗菌药物载体:庆大霉素脂质体和两性霉素B,可减少药物的耐药性,降低心脏毒性。

4、激素类药物载体。

四:国电重庆恒泰发电公司怎样?

还可以吧

五:关于制备脂质体的问题 100分

脂质体

(一)、脂质体 (liposome): 系指将药物包封于类脂质双分子层内而形成的微型泡囊体。

(二)、脂质体的分类

脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。

小单室脂质体(SUV):粒径约0.02~0.08m;大单室脂质体 (LUV)为单层大泡囊,粒径在0.1~lm。

多层双分子层的泡囊称为多室脂质体 (MIV),粒径在1~5m之间。

(三)、脂质体的组成与结构

脂质体的组成:类脂质(磷脂)及附加剂。

1、磷脂类:包括天然磷脂和合成磷脂二类。磷脂的结构特点为一个磷酸基和一个季铵盐基组成的亲水性基团,以及由两个较长的烃基组成的亲脂性基团。

天然磷脂以卵磷脂(磷脂酰胆碱,PC)为主,来源于蛋黄和大豆,显中性。

合成磷脂主要有DPPP(二棕榈酰磷脂酰胆碱)、DPPE(二棕榈酰磷脂酰乙醇胺)、DSPC(二硬脂酰磷脂酰胆碱)等,其均属氢化磷脂类,具有性质稳定,抗氧化性强,成

品稳定等特点,是目前国外首选的辅料。

2、胆固醇:胆固醇与磷脂是共同构成细胞膜和脂质体的基础物质。胆固醇具有调节膜流动性的作用,故可称为脂质体“流动性缓冲剂”。

(四)、脂质体的制备

1、注入法:主要用于制备单室脂质体,少数为多室脂质体,其粒径绝大多数在2m以下。

2、薄膜分散法:主要用于制备多室或大单室脂质体,超声后以单室脂质体为主。

3、超声波分散法:主要用于制备以单室为主单室脂质体。

4、逆相蒸发法:将磷脂溶于有机溶剂,加入含药物的缓冲液,超声使成稳定w/o乳剂,减压除去有机溶剂在旋转器壁上形成薄膜,加入缓冲液使凝胶脱落,制得水性混悬液,通过

凝胶色谱法或超速离心法,除去未包入的药物,即得大单室脂质体。

5、冷冻干燥法:适合于热敏感的药物。

6、重建脂质体:单室或多室型。是目前国外应用最为广泛的制备方法之一。其具有工艺稳定、适合于工业化生产、质量易于控制、产品稳定性好等特点。

(五)、脂质体的质量控制与评价

1、形态、粒径及其分布

采用扫描电镜、激光散射法或激光扫描法测定。根据给药途径不同要求其粒径不同。如注射给药脂质体的粒径应小于200nm,且分布均匀,呈正态性,跨距宜小。

2、包封率和载药量

包封率:包封率=(脂质体中包封的药物/脂质体中药物总量)×100%

一般采用葡聚糖凝胶、超速离心法、透析法等分离方法将溶液中游离药物和脂质体分离,分别测定,计算包封率。通常要求脂质体的药物包封率达80%以上。

载药量:载药量=[脂质体中药物量/(脂质体中药物+载体总量)]×100%

载药量的大小直接影响到药物的临床应用剂量,故载药量愈大,愈易满足临床需要。载药量与药物的性质有关,通常亲脂性药物或亲水性药物较易制成脂质体。

3、脂质体的稳定性

1)、物理稳定性:主要用渗漏率表示。

渗漏率=(放置前介质中药物量-放置后介质中的药量)/制剂中药量x100%

胆固醇以加固脂质双分子层膜,降低膜流动,可减小渗漏率。

2)、化学稳定性:

(1)磷脂氧化指数:氧化指数=A233nm=A215nm;一般规定磷脂氧化指数应小于0.2。

(2)磷脂量的测定:基于每个磷脂分子中仅含1个磷原素,采用化学法将样品中磷脂转变为无机磷后测定磷摩尔量(或重量),即可推出磷脂量。

4、防止氧化的措施:

防止氧化的一般措施有充入氮气,添加抗氧剂-生育酚、金属络合剂等;也可直接采用......余下全文>>

六:影响脂质体形成的因素?

脂质体在制备、储存以及应用过程中,可能受物理、化学和生物等因素影响,发生结构上的变化,直接影响其载药稳定性和生物功能。1,温度 2,磷脂质的材料 3,溶剂的性质 4,制备的方法 5,搅拌的速度等

七:如何评价脂质体制备的好坏

在脂质体内部引入树枝状的骨架结构,使骨架末端分支掺入磷脂双分子层,形成类似脂质体的囊泡,即仿脂质体。对这一新的结构进行制备、表征、安全性及载药等多方面的考察

八:长循环脂质体的制备方法,

本发明涉及一种米托蒽醌纳米靶向缓释长循环脂质体及制备方法。脂质体粒径在90~120nm之间,其粒径均匀,表面富含有叶酸。原料质量份数比配比为:聚乙二醇修饰的O-羧甲基壳聚糖十八烷基季铵盐∶叶酸修饰的O-羧甲基壳聚糖十八烷基季铵盐∶O-羧甲基壳聚糖十八烷基季铵盐∶米托蒽醌=1∶1~2∶2~4∶0.5~1;O-羧甲基壳聚糖十八烷基季铵盐∶胆固醇的质量比为4~2∶1;采用反相乳液法聚合或采用薄膜分散法制备;整个制备过程简单快捷,制备周期短,制备的高分子脂质体对药物的包封率大于90%,载药率载高达9.0%;通过表面PEG的修饰,可使高分子脂质体不易被人体网状内皮系统捕捉,延长在体内的循环时间,同时增加高分子脂质体的生物利用度和生物相容性。

扫一扫手机访问

发表评论