介电限域效应

一:什么是介电限域效应? 5分

介电限域效应

随着纳米晶粒粒径的不断减小和比表面积不断增加,其表面状态的改变将会引起微粒性质的显著变化。例如,当在半导体纳米材料表面修饰一层某种介电常数较小的介质时,相对裸露于半导体纳米材料周围的其它介质而言,被包覆的纳米材料中电荷载体的电力线更易穿过这层包覆膜,从而导致它比裸露纳米材料的光学性质发生了较大的变化,这就是介电限域效应。当纳米材料与介质的介电常数值相差较大时,便产生明显的介电限域效应,此时,带电粒子间的库仑作用力增强,结果增强了电子-空穴对之间的结合能和振子强度,减弱了产生量子尺寸效应的主要因素——电子-空穴对之间的空间限域能,即此时表面效应引起的能量变化大于空间效应所引起的能量变化,从而使能带间隙减小,反映在光学性质上就是吸收光谱表现出明显的红移现象。纳米材料与介质的介电常数相差越大,介电限域效应就越明显,吸收光谱红移也就越大。近年来,在纳米Al2O3、Fe2O3、SnO2中均观察到了红外振动吸收。

二:纳米材料的五大效应

表面效应是指纳米粒子表面原子与总原子数之比随着粒径的变小而急剧增大后所引起的性质上的变化。表9-2给出了纳米粒子尺寸与表面原子数的关系。表1 纳米粒子尺寸与表面原子数的关系 粒径(nm) 包含的原子(个) 表面原子所占例 20 2.5X10^5 10 10 3.0X10^4 20 5 4.0X10^3 40 2 2.5X10^2 80 1 30 99 从表可以看出,随粒径减小,表面原子数迅速增加。另外,随着粒径的减小,纳米粒子的表面积、表面能的都迅速增加。这主要是粒径越小,处于表面的原子数越多。表面原子的晶体场环境和结合能与内部原子不同。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易于其他原子想结合而稳定下来,因而表现出很大的化学和催化活性。 粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。Kubo采用一电子模型求得金属超微粒子的能级间距为:4Ef/3N式中Ef为费米势能,N为微粒中的原子数。宏观物体的N趋向于无限大,因此能级间距趋向于零。纳米粒子因为原子数有限,N值较小,导致有一定的值,即能级间距发生分裂。半导体纳米粒子的电子态由体相材料的连续能带随着尺寸的减小过渡到具有分立结构的能级,表现在吸收光谱上就是从没有结构的宽吸收带过渡到具有结构的吸收特性。在纳米粒子中处于分立的量子化能级中的电子的波动性带来了纳米粒子一系列特性,如高的光学非线性,特异的催化和光催化性质等。 纳米粒子的介电限域效应较少不被注意到。实际样品中,粒子被空气﹑聚合物﹑玻璃和溶剂等介质所包围,而这些介质的折射率通常比无机半导体低。光照射时,由于折射率不同产生了界面,邻近纳米半导体表面的区域﹑纳米半导体表面甚至纳米粒子内部的场强比辐射光的光强增大了。这种局部的场强效应,对半导体纳米粒子的光物理及非线性光学特性有直接的影响。对于无机-有机杂化材料以及用于多相反应体系中光催化材料,介电限域效应对反应过程和动力学有重要影响上述的小尺寸效应﹑表面效应﹑量子尺寸效应﹑宏观量子隧道效应和介电限域应都是纳米微粒和纳米固体的基本特征,这一系列效应导致了纳米材料在熔点﹑蒸气压﹑光学性质﹑化学反应性﹑磁性﹑超导及塑性形变等许多物理和化学方面都显示出特殊的性能。它使纳米微粒和纳米固体呈现许多奇异的物理﹑化学性质。

三:纳米金属粉末会不会产生介电限域效应?

要看金属粉末是否带有电荷,如果带有正或负电荷就可以产生介电域效应。

四:纳米材料的四大效应及其实际意思是什么啊? 10分

表面效应:当颗粒的直径减小到纳米尺度范围时,随着粒径减小,比表面积和表面原子数迅速增加。

量子尺寸效应:当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动(蓝移),直观上表现为样品颜色的变化,如CdS微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性[5,6]。

小尺寸效应[7]:当物质的体积减小时,将会出现两种情形:一种是物质本身的性质不发生变化,而只有那些与体积密切相关的性质发生变化,如半导体电子自由程变小,磁体的磁区变小等;另一种是物质本身的性质也发生了变化,当纳米材料的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,材料的磁性、内压、光吸收、热阻、化学活性、催化活性及熔点等与普通晶粒相比都有很大的变化,这就是纳米材料的体积效应,亦即小尺寸效应。这种特异效应为纳米材料的应用开拓了广阔的新领域,例如,随着纳米材料粒径的变小,其熔点不断降低,烧结温度也显著下降,从而为粉末冶金工业提供了新工艺;利用等离子共振频移随晶粒尺寸变化的性质,可通过改变晶粒尺寸来控制吸收边的位移,从而制造出具有一定频宽的微波吸收纳米材料。

宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如:微粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以穿越宏观系统中的势垒并产生变化,称为宏观量子隧道效应[8].利用这个概念可以定性解释超细镍粉在低温下继续保持超顺磁性。Awachalsom等人采用扫描隧道显微镜技术控制磁性粒子的沉淀,并研究低温条件下微粒磁化率对频率的依赖性,证实了低温下确实存在磁的宏观量子隧道效应[9]宏观量子隧道效应的研究对基础研究和实际应用都有重要的意义。它限定了磁带、磁盘进行信息存储的时间极限。宏观量子隧道效应与量子尺寸效应,是未来微电子器件的基础,或者说确立了现有微电子器件进一步微型化的极限。

库仑堵塞与量子隧穿[10,11] :当体系的尺度进入到纳米级(一般金属粒子为几个纳米,半导体粒子为几十纳米),体系是电荷“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2C,e为一个电子的电荷,C为小体系的电容,体系越小,C越小,能量Ec越大。我们把这个能量称为库仑堵塞能。换句话说,库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输。通常把小体系中这种单电子输运行为称为库仑堵塞效应。如果两个量子点通亥一个“结”连接起来,一个量子点上的单个电子穿过能垒到另一个量子点上的行为称作量子隧穿。利用库仑堵塞和量子隧穿效应可以设计下一代的纳米结构器件,如单电子晶体管和量子开关等。以上几种效应都是纳米微粒和纳米固体的基本特性,它使纳米微粒和纳米固体呈现出许多奇特的物理和化学性质[2,12] ,出现一些不同于其它大块材料的反常现象。这使纳米材料具有了传统材料所没有的优异性能和巨大的应用前景,成为材料科学......余下全文>>

五:为什么金属能做介电质

的确作为电介质必须要绝缘,这样在电容器中才能起到增大电容的作用。

但是这个绝缘并不是对整个金属而言,只要能满足这个金属电介质不跟外界有电

荷移动即可,只要在金属的表面涂上绝哗层,这个金属照样可以起到电介质的作

用。

六:纳米材料都有哪些特性

纳米材料的特性

由于纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子分数远远大于

晶态材料表面原子所占的百分数,导致了纳米材料具有传统固体所不具备的许多特殊

基本性质,如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限域效

应等,从而使纳米材料具有微波吸收性能、高表面活性、强氧化性、超顺磁性及吸收

光谱表现明显的蓝移或红移现象等。除上述的基本特性,纳米材料还具有特殊的光学

性质、催化性质、光催化性质、光电化学性质、化学反应性质、化学反应动力学性质

和特殊的物理机械性质。

七:初次性交失败怎么回事?

凡事第一次总比较困难,初次性交的情况也完全相同。所以,第一次的性经验,谁也不敢保证绝对成功。失败的原因可能是男女双方,也可能男方或女方单一方面的关系。若是分失败的原因,也不必把责任一味地往对方身上推,因为这样做根本于事无补。  在这里,希望大家了解一些有关的基本事项。  ·初次经验即使做不好也没什么。  首先,初次特别是男女双方都没有经验的场合。男性从来没有经验时,可能连阴茎插入阴道的动作都做不好,或许有些没有经验的男士,连阴道口在那里都搞不清楚呢!愈紧张愈糟糕,到最后连勃起都有困难。为了寻找阴道口的正确位置,要先确认裂缝的部位,柔软的粘膜组织下方就是阴道的入口,这是最简单的方法。  ·初次性交体位采取正常位比较适当  第二、插入时,必须由女性这一方采取共同作业的态度。初次性交最适当的体位,也就是所谓的正常位。女性面朝上躺下,膝盖立起来,两腿张开,男性趴在中间,两肘支住上身,男上女下的体位。  男性的阴茎不是往下插,而是与床铺平行,慢慢地往女性的下体插进去。此时,女性两腿尽量张开,阴茎插入阴道后,必须挺起腰部来迎合对方。总之,性行为是具体的共同作业。  ·即使失败也不必责备  第三、阴茎插入后,原以为要进行交合运动时,男性却射精了。这种事不必介意。几乎没有一个女性,能在初次性交中得到快感。初次,只是因结合的事实,而心里上有充分的满足感罢了。  若不幸初次性交失败的话,该怎么办才好呢?  例如:男性在插入前,不知不觉射精了,也就是早泄;男性会变得极为沮丧,此时,女性千万不要讲“你不行!”这一类话,因为可能会由于一句话而造成男性的阳萎,插入前早泄的话,再等三十分钟至一小时,年轻男性的阴茎,很容易就能恢复勃起。  若是男性突然的勃起不全,或女人极度紧张的关系,无法进行性交的话,解决的方法很简单,彼此不要互相责怪,一边温柔的爱抚、拥抱,一边安慰对方,宁静的度过这一天。然后,第二天再进行新的开始。  性交的失败,绝不会只发生在你身上。人类,或多或少都遭遇失败,大家应该从失败中学习,让性交真正的成功。参考资料:www.39.net/eden/xbj/xhbj/hxxa/13036.html

扫一扫手机访问

发表评论