一:液相色谱柱都分为哪些类?
我 们 科 研室是在精密 网 上 买 的, 这家 网 站的 化 学 试 剂很 全 面 。
二:高效液相色谱中固定相分类?最常用的是哪类?
高效液相色谱柱大致可分为五类:一、高效反相液相色谱柱 以C18为代表的高效反相液相色谱柱一直被描述为药物发现、开发、方法验证(validation)的心脏! 高效反相液相色谱柱也极其广泛应用在药物代谢及动力学、生命科学、医疗健康、生物分析检测、毒品和兴奋剂检测、食品安全分析、环境分析、军事、国土安全等领域! 高效反相液相色谱制备柱也是最重要的分离纯化技术之一! 无论是过去,现在和可预见的未来, 以球形B型硅胶(5um 或 3um)为材料骨架的高效反相液相色谱柱在实际应用中永远占有统治地位!常规HPLC方法的开发几乎总是从C18作为出发点,反相色谱占了80%以上的应用。 过去数十年来, 无数努力集注于: 1) 改善硅胶的品质, 优化键合化学; 2)开发新颖的材料骨架替代硅胶。十多年前, 使用有机硅材料取代无机硅材料作为起始原料生产球形硅胶代表一个划时代的革命! 生产的球形硅胶命名为B型球形硅胶。无机A型硅胶重金属含量很高, 硅胶表面若干位置严重酸化及螯合效应等导致许多碱性化合物回收率低。球形B型硅胶重金属含量很低, 在非常大的程度上消除了A型无机硅胶表面若干位置严重酸化及螯合效应等问题。用B型球形硅胶合成高效液相色谱填料, 导致高效液相色谱柱产品质量有质的飞跃!然而,另一方面,基于客户的大量反馈和我们对几乎所有色谱厂商产品的评估, 我们相信键合化学问题没有获得很好的解决。具体体现在:
(1) “纯粹”反相机理的键合相例如C18和C8市场上仍然是单功能,三功能和聚合物键合相"鱼目混杂"。 (2) 键合相封端问题没有获得很好的解决, 一直是困扰色谱领域最大的问题! 迄今为止全部的尝试只获得有限的成功。
(3) 极性嵌入式(Polar embedded)键合相
极性嵌入式(Polar embedded)键合相是C18高效反相液相色谱"卫星群"中最重要的产品, 是C18和C8键合相最重要的补充。
极性嵌入式(Polar embedded)键合相起源于Supelco ABZ。Supelco ABZ的键合方法是用aminopropyl键合相和长链羧酸缩合反应形成一个C16酰胺。 那么市场上的极性嵌入式(Polar embedded)键合相群的主要问题是什么? 极性嵌入式键合相和所谓的水相C18主要问题是键合相泄漏, 键合相不稳定等。两者之间的内在差异是: 极性嵌入式键合相键合相泄漏和键合相不稳定等问题能够获得很好的解决, 但使用极性硅烷试剂封端的所谓的水相C18键合相键合相泄漏和键合相不稳定等问题是不可逆转的。 在类似C18链长度的硅烷试剂中嵌入极性酰胺或酰酯, 使得键合相亲水, 在100%水相条件下稳定。但按照类似C18的键合化学, 键合覆盖率低, 键合相不稳定。 Chrom-Matrix InnovationTM PEG键合相是非常极性的产品, 但测试结果表明: PEG键合相非常稳定, 在LC-MS测试中没有检测到泄漏。这一成功和我们在胶体与界面科学领域的长期经验帮助我们成功开发了新型催化条件下新的键合化学。加上超临界流体技术封端, Chrom-Matrix InnovationTM 极性酰胺或酰酯键合相比那么市场上的极性嵌入式(Polar embedded)键合相群稳定得多。色谱柱产品质量和寿命有质的飞跃! 即使这样, LC-MS测试显示: Chrom-Matrix InnovationTM 极性酰胺或酰酯键合相仍然有非常低的泄漏。(4) 无泄漏低孔和高比表面......余下全文>>
三:液相色谱柱种类?
成都摩尔科学仪器有限公司提供各种液相色谱柱,正相色谱柱, 反相色谱柱,HTLIC色谱柱,离子色谱柱等,还有很多。我就不一一说了。你可以自己搜索
四:常见的液相色谱柱检测器有哪几种
光学类检测器
1、紫外吸收检测器(UVD)是目前HPLC中应用最广泛的检测器。它的主要特点是灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱。它要求被检测样品组分有紫外吸收,属于选择性检测器。
2、二极管阵列检测器(PDAD)是20世纪80年代才出现的一种光学多通道检测器,它可以看作是UVD的一个分支。在对每个洗脱组分进行光谱扫描,经计算机处理后,得到光谱和色谱结合的三维图谱。其中吸收光谱用于定性(确证是否是单一纯物质),色谱用于定量,常用于复杂样品(如生物样品、中草药)的定性定量分析。
3、荧光检测器(FLD)同样属于选择性检测器,其灵敏度在目前常用的HPLC检测器中是最高的,应用也较多,仅次于UVD。它适用于能激发荧光的化合物。很多与生命科学有关的物质,如氨基酸、胺类、维生素、甾族化合物及某些代谢药物都可以用荧光法检测。荧光检测器在生物样品痕量分析中很有用,尤其在用荧光衍生后,可以检测很微量的氨基酸和肽。
通用型检测器
1、示差折光检测器(RID)是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器。它的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。
2、蒸发光散射检测器(ELSD)也是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。ELSD的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。ELSD灵敏度比RID高,对温度变化不敏感,基线稳定,可用于梯度洗脱。现在ELSD已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。
3、质谱检测器(MSD)是另一种通用型检测器,在灵敏度、选择性、通用性及化合物的分子量和结构信息的提供等方面都有突出的优点。但它的昂贵操作费用和复杂性限制了它的推广应用。
希望对你有所帮助。
五:液相色谱柱的填料有哪些
常见色谱柱中的填料分类
1、液相
a、反相(与离子对)方法
C18(十八烷基或ODS)----------- 普适性好;保留性强,用途广
C8(辛基) -----------与C18相似,但保留值稍小
C3,C4 -----------保留值小;大多用于肽类与蛋白质
C1【三甲基硅烷(TMS)】------保留值最小;最不稳定
苯基,苯乙基 -----------保留值适中;选择性有所不同
CN(氰基) -----------保留值适中;正相和反相均可使用
NH2(氨基) -----------保留性弱;用于烃类;欠稳定
聚苯乙烯基b -----------在1<PH<13的流动相中稳定;对某些分 离峰形好,柱子寿命长
b、正相方法
CN(氰基) -----------普适性好;极性适中;用途广
OH(二醇基) -----------极性大于CN
NH2(氨基) -----------极性大,欠稳定
硅胶b ------------普适性好;价廉;操作欠方便;用于制备LC
c、空间排阻方法
硅胶b -----------普适性极好;作吸附剂用
硅烷化硅胶 -----------吸附性弱,溶剂兼容性好;适用于有机溶剂
OH(二醇基) ------------欠稳定;在水SEC中使用(凝胶过滤)
聚苯乙烯基b ------------广泛用于有机SEC(凝胶渗透);一般与水和极性大的有机溶剂不相容
d、离子交换方法
键合相 ------------稳定性与重现性均不好
聚苯乙烯基b -------------柱效不高;稳定;重现性好
a :除另有说明,均为硅胶基质键合相
b :此类填料为非键合相
朋友可以到行业内专业的网站进行交流学习!
分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。
六:液相色谱法的原理和分类
液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。 采用柱色谱技术的一种高效液相色谱法,样品展开方式采用洗脱法。根据不同的分离方式,离子色谱可以分为高效离子色谱 、离子排斥色谱和流动相离子色谱3类。高效离子色谱法使用低容量的离子交换树脂,分离机理主要是离子交换。离子排斥色谱法用高容量的树脂,分离机理主要是利用离子排斥原理。流动相离子色谱用不含离子交换基团的多孔树脂,分离机理主要是基于吸附和离子对的形成。离子色谱仪由淋洗液贮存器 、泵 、进样阀 、分离柱 、抑制柱、电导检导器和数据处理单元等组成。离子色谱仪最重要的部件是分离柱,装有离子交换树脂。抑制柱是抑制型离子色谱仪的关键部件,其作用是将淋洗液转变成低电导部分,以降低来自淋洗液的背景电导,同时将样品离子转变成其相应的酸或碱,以增加其电导。分离阴离子,抑制柱填充强酸性阳离子交换树脂;分离阳离子,抑制柱填充强碱性阴离子交换树脂。检测器分通用型检测器与专用型检测器。前者如电导检测器,对检测池中所有离子都有响应;后者如紫外-可见分光光度计,对离子具有选择性响应。 离子对色谱法是将一种(或数种)与样品离子电荷(A+)相反的离子(B-,称为对离子或反离子,Counterion)加入到色谱系统的流动相(或固定相)中,使其与样品离子结合生成弱极性的离子对(呈中性缔合物)。此离子对不易在水中离解而迅速进入有机相中,从而控制溶质离子的保留行为。