变压器三相不平衡

一:变压器三相不平衡有哪些危害

对变压器没紶什么明显危害,只是会限制变压器的容量不能得到百分之百的发挥。比如A相电流接近变压器额定电流,B、C相电流仅有额定电流的百分之十,但这时变压器已经不能再带任何三相用电设备了,限制了变压器的容量。

二:变压器三相直阻不平衡怎么办?

你用双臂电桥测的吗?

如果是大这么多 那就得把变压器盖吊开,很有可能是里面的螺丝松了。

上次我们厂的变压器也是测出来的值相差太大。后来紧了螺丝,测出来就好了。顺便说一下:(最大值减去最小值 除以平均值 )% 其值不能超过4%

才算合格

三:对配电变压器三相负载不平衡有何规定?

农村低压电网改造后低压电网结构发生了很大的变化,电网结构薄弱环节基本上已经解决,低压电网的供电能力大大增强,电压质量明显提高,大部分配电台区的低压线损率降到了11%以下,但仍有个别配电台区因三相不平衡负载等原因而造成线损率居高不下,给供电管理企业特别是基层供电所电工组造成较大的困难和损失,下面针对这些情况进行分析和探讨。

一、原因分析

在前几年的农网改造时,对配电台区采取了诸如增添配电变压器数量,新增和改造配电屏,配电变压器放置在负荷中心,缩短供电半径,加大导线直径,建设和改造低压线路,新架下户线等一系列降损技术措施,也收到了很好的效果。但是个别台区线损率仍然很高,针对其原因,我们做了认真的实地调查和分析,发现一些台区供电采取单相二线制、二相三线制,即使采用三相四线制供电,由于每相电流相差很大,使三相负荷电流不平衡。从理论和实践上分析,也会引起线路损耗增大。

二、理论分析

低压电网配电变压器面广量多,如果在运行中三相负荷不平衡,会在线路、配电变压器上增加损耗。因此,在运行中要经常测量配电变压器出口侧和部分主干线路的三相负荷电流,做好三相负荷电流的平衡工作,是降低电能损耗的主要途经。

假设某条低压线路的三相不平衡电流为IU、IV、IW,中性线电流为 IN,若中性线电阻为相线电阻的2倍,相线电阻为R,则这条线路的有功损耗为

ΔP1=(I2UR+I2VR+I2WR+2I2NR)×10-3 (1)

当三相负荷电流平衡时,每相电流为(IU+IV+IW)/3,中性线电流为零,这时线路的有功损耗为

ΔP2=■2R×10-3 (2)

三相不平衡负荷电流增加的损耗电量为

ΔP=ΔP1-ΔP2=■(I2U+I2V+I2W-I2UI2V-I2VI2W+I2WI2U+3I2N)R×10-3(3)

同样,三相负荷电流不平衡时变压器本身也增加损耗,可用平衡前后的负荷电流进行计算。由此可见三相不平衡负荷电流愈大,损耗增加愈大。

三相负荷电流不平衡率按下式计算

K=■×100 (4)

一般要求配电变压器出口三相负荷电流的不平衡率不大于10%,低压干线及主要支线始端的三相电流不平衡率不大于20%。可见若不平衡,线损可能增加数倍。据了解,目前农村单相负荷已成为电力负荷的主要方面,农村低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相电路上,并且还有一定数量的单相两线、三相三线制供电。偿一般情况平均测算估计,单相负荷的线损可能增加2~4倍,由此可知,调整三相负荷平衡用电是降损的主要环节。

三、现场调查分析、试验情况

实践是检验真理的标准,理论需要在实践中验证。2004年我们在庄寨供电所检查分析个别台区线损率高的原因,发现庄寨供电所杨小湖配电台区损耗严重,我们重点进行了解剖分析:

该台区配电变压器容量为100kV·A,供电半径最长550m,由上表得该配变台区267户用电量12591kW·h,没有大的动力用户,只有1户轧面条机,户均月用电46.98kW·h,低压线损一直17%左右,用钳流表测量变压器出口侧24h电流平均值为:IU=9A,IV=15A,IW=35A,IN=21A。

三相负荷电流不平衡率计算为:

K=■×100%=■×100%=35.59%(5)

由(5)式看出三相不荷严重不平衡,超出规定范围的25%。为此,我们组织农电工用两天时间(5人2天)对该台......余下全文>>

四:变压器的三相不平衡度在哪个范围就合适啊

变压器三相负荷应尽量保证平衡分配,电流是否平衡是由三相负荷的不平衡度衡量的。配电变压器:要求其不平衡度不应大于15%。只带少量单相负荷的三相变压器:中性点电流不应超过额定电流的25%。

五:三相电流不平衡跟变压器有没有关系

除非变压器有一相发生故障,否则应当是负荷的原因。

六:三相变压器空载不平衡,是什么原因?

首先我不知道你到底是什么型式的变压器。

如果是最普通型式的变压器,它的铁芯是平面的,三相磁路是不一样长的,所以三相空载电流就是不平衡的。Y d11接法更严重,达30%-40%。

七:三相变压器三相电流不平衡标准是多少

1、为了保证变压器的合理运行,三相变压器每相负载的分配应保证在一天大部分时间和高峰负载期三相基本平衡。满足“三相负载电流不平衡度不大于15%”,中性线电流不得超过额定电流的25%的规定。

2、在新安装负载接线时,要按实际负载统计,把三相负载配置均衡。

3、对运行中的变压器,要注意及时观察测量其负载电流。对有分相电流表的随时都可以看出负载的分配情况,对于没有装分相电流表的,可用钳型电流表测量各相或中性线的电流,并根据实测情况及时把负载调整到基本平衡状态。

八:干式变压器三相电压不平衡是什么原因

可分为1.“先天性”质量问题,三相绕组匝数或截面不同,影响阻抗差别;2.“后天性”a.故障,匝间短路,b.电源不平衡,c.负荷严重不对称,d.单相接地。

九:变压器运行中遇到三相电压不平衡现象如何处理?

如果三相电压不平衡时,应先检查三相负荷情况。对Δ/Y接线的三相变压器,如三相电压不平衡,电压超过5V以上则可能是变压器有匝间短路,须停电处理。对Y/Y接线盯变压器,在轻负荷时允许三相对地电压相差10%;在重负荷的情况下要力求三相电压平衡

十:变压器的三相电阻不平衡率40%会产生什么后果

3 三相负荷不平衡的危害

3.1 对配电变压器的影响

(1)三相负荷不平衡将增加变压器的损耗:

变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。

从数学定理中我们知道:假设a、b、c 3个数都大于或等于零,那么a+b+c≥33√abc 。

当a=b=c时,代数和a+b+c取得最小值:a+b+c=33√abc 。

因此我们可以假设变压器的三相损耗分别为:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下:

Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕

由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。

则变压器损耗:

当变压器三相平衡运行时,即Ia=Ib=Ic=I时,Qa+Qb+Qc=3I2R;

当变压器运行在最大不平衡时,即Ia=3I,Ib=Ic=0时,Qa=(3I)2R=9I2R=3(3I2R);

即最大不平衡时的变损是平衡时的3倍。

(2)三相负荷不平衡可能造成烧毁变压器的严重后果:

上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。

(3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高:

在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。

3.2 对高压线路的影响

(1)增加高压线路损耗:

低压侧三相负荷平衡时,6~10k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为: ΔP1 = 3I2R

低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:

ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);

即高压线路上电能损耗增加12.5%。

(2)增加高压线路跳闸次数、降低开关设备使用寿命:

我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。

3.3 对配电屏和低压线路的影响

(1)三相负荷不平衡将增加线路损耗:

三相四线制供电线路,把负荷平均分配到三相上,设每相的电流为I,中性线电流为零,其功率损耗为: ΔP1 = 3I2R

在最大不平衡时,即某相为3I,另外两相为零,中性线电流也为3I,功率损耗为:

ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);

即最大不平衡时的电能损耗是平衡时的6倍,换句话说,若最大不平衡时每月损失1200 kWh,则平衡时......余下全文>>

扫一扫手机访问

发表评论