太阳是怎样形成的

一:太阳是怎么产生的?

在宇宙中,存在着许多星际弥漫物质。密度较大的地方就象一团团云块,因此被称为星际云。太阳就是由星际云形成的。在星际云中,由于万有引力的作用,它要发生收缩,同时,分子和原子的热运动会产生膨胀压力。在质量较大、温度不太高的情况下,万有引力大于膨胀压力,于是星际云在自吸作用下收缩。起初,星际云收缩很快。由于引力势能转化为热运动的动能,温度升高。当密度达到每立方米10-9克时,云内出现涡流,因而出现自转。同时周围物质仍不断向中心聚集。 随着太阳的不断增大,中心温度和密度不断增加,并通过对流方式把能量传出来。当中心温度达到一万度,表面温度二、三千度时,就发出红光、形成原始太阳。太阳刚成为一颗恒星,体积比现在大得多,辐射的总能量也大几倍。太阳成为恒星后收缩过程变慢,当中心温度达一千多万度时,太阳中就开始发生强烈的聚变反应,释放出巨大的能量。由于温度极高,膨胀压力与万有引力达到平衡,这时太阳就达到了稳定阶段。现在太阳就处在稳定阶段的中期。

二:太阳是怎样形成的?

太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包著的一层正在进行氢融合反应,再外围便是太阳的一般物质.氢融合反应产生的光和热,正好和收缩的重力相同.核心区域的氦由於温度较低,而氦的密度又比氢大,所以重力大於热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围. 随著太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”. 在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关.想想果冻的情形,轻拍一下果冻,它便会晃动,而且果冻越大,晃动的程度越小.同样的道理,红巨星的体积越大,膨胀,收缩的周期也越长. 简单来说,五十亿年后,太阳核心区域收缩的热将导致外部膨胀,变成一颗红巨星.充满氦的核心区域则持续收缩,温度也随之增加.当核心区域的温度升至一亿度时,开始发生氦融合反应,三个氦经过一连串的核反应后融合成为一个碳,放出比氢融合反应更巨量的光和热,使太阳外层急速膨胀,连地球也吞没了,成为一个体积超大的红色超巨星. 太阳的末路:白矮星 相似的过程是在红色超巨星的核心区域再次发生,碳累积越来越多,碳的密度比氦大,相对的收缩的重力也更大,史的碳构成的核心区域收缩下去.但是当此区域收缩到非常紧密结实的程度,也就是碳原子核周围所有的电子都挤在一起,挤到不能再挤时,这种紧密的压力挡住了重力收缩.虽然此时的温度比摄氏一亿度高很多,但是还没有高到可以产生碳融合反应的地步.因此,太阳核心区域不再收缩,但也没有多余的热使外层膨胀,就如此僵持著,形成了白矮星.由於白矮星的核心没有核融合反应来供给光与热,整个星球越来越暗,逐渐黯淡下去,最后变成一颗不发光的死寂星球----黑矮星.经过理论上的计算,白矮星慢慢冷却变成黑矮星的过程非常漫长,超过一百多亿年,而银河系的形成至今不过一百多亿年,因此天文学家认为银河系还没有老到可以形成黑矮星. 经过计算,太阳体积缩小一百万倍,约像地球一样大时,物质间拥挤的的程度才足以抗拒重力收缩.想想,质量与太阳相当,体积却只有地球大小,很容易算出白矮星的密度比水重一百万倍,也就是说一一方公分的物质约有一公吨重,是非常特别的物质状态,物理学家称为简并状态.原子是由原子核和电子构成.一般人都看过电子围绕原子核的图画或动画,虽然是简化的示意图,却也反映了微小的物质状态.通常电子都在距离原子核很远的地方绕转著,如果温度逐渐降低,或是外力逐渐增加,则电子的活动范围便被押挤而越来越小,逐渐靠近原子核.但是电子与原子核之间的距离有其最小范围,电子不能越过这道界线.就像围绕在玻璃珠周围的沙粒一样,沙粒最多依附在玻璃珠表面,而无法压入玻璃珠中. 同样的,当所有的电子都被迫压挤再原子的表层时,物质状态达到了一个临界,即使在增加压力,也无法将电子往内压挤.这种由电子处於最内层而产生的抗压力称为电子简并压力.依据理论推算,质量小於一点四个太阳质量的星球重力,不足以压垮电子简并压力,因此白矮星的质量不能比一点四个太阳质量更大.到目前为止,所发现的白矮星数量超过数百个,也都符合这个理论.这个上限首先是由一个印度天文学家钱德拉沙哈(Subrahmanyan Chandrasekhar 1910-1995)在1931年利用量子力学所求出来的,因此称为钱式极......余下全文>>

三:太阳是什么时候形成的?

50亿年前

在群星之间,并不是空无一物,而是布满了物质,是气体,尘埃或两者的混合物.其中一种低温,不发光的星际尘云,相信是形成恒星的基本材料.

这些黑暗的星际尘云温度很低,约为摄氏-260至-160之间.天文学家发现这类物质如果没有什麼外力的话,这些星际尘云就如天上的云朵,在太空中天长地久的飘著.但是如果有些事情发生,例如邻近有颗超新星爆炸,产生的震波通过星际尘云时,会把它压缩,而使星际尘云的密度增加到可以靠本身的重力持续收缩.这种靠本身重力使体积越缩越小的过程,称为”重力溃缩”.也有一些其他的外力,如银河间的磁力或尘云间的碰撞,也可能使星际云产生重力溃缩.

大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩.体积越缩越小,核心的温度也越来越高,密度也越来越大.当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近於摄氏一千万度左右.当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应.此时,一颗叫太阳的恒星便诞生了.

经过一连串的核反应,会消耗掉四个氢核,形成一个氦核,而损失了一点点的质量.依据爱因斯坦质量和能量互换的方程式E=MC^2,损失的质量转化为光和热辐射出去,经过一路的碰撞,吸收再发射的过程,最后光和热传到太阳表面,再辐射到太空中一去不返,这也就是我们所看到的太阳辐射.当太阳中心区域氢融合反应产生的能量传到表面时,大部份以可见光的形式辐射到太空.

在五十忆年前刚形成的太阳并不稳定,体积缩胀不定.收缩的重力遭到热膨胀压力的阻挡,有时热膨胀力扬头,超过了重力,恒星大气因此膨胀.但是一膨胀,温度就跟著下降.膨胀过头,导致温度过低,使热膨胀压力挡不住重力,则恒星大气开始收缩.同样的,一收缩,温度就跟著上升,收缩过头,导致温度过高,又使热膨胀压力超过重力, 恒星大气又开始膨胀.

这种膨胀,收缩的过程反覆发生,加上周围还笼罩在云气中,因此亮度变化很不规则.但是胀缩的程度慢慢缩小,最后热膨胀力和收缩力达到平衡,进入稳定期.此时,太阳是一颗黄色的恒星,差不多就像我们现在看到的一样.

太阳进入稳定期后,相当稳定的发出光和热,可以持续一百亿年之久.这期间占太阳一生中的90%,天文学家特称为”主序星”时期.太阳成为一颗黄色主序星,至今己有五十亿年,再过五十亿年,太阳度过一生的黄金岁月后,将进入晚年.

有足够长的稳定期,对行星上的生命发生非常重要.以地球的经验来说,地球太约和太阳同时形成,将近十亿年后才出现生命,经过四十多亿年后,才发展出高等智慧的生物.因此,天文学家要找外星生命,只对生存期超过四十亿的恒星有兴趣.

太阳在晚年将成为红巨星

太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包著的一层正在进行氢融合反应,再外围便是太阳的一般物质.氢融合反应产生的光和热,正好和收缩的重力相同.核心区域的氦由於温度较低,而氦的密度又比氢大,所以重力大於热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围.

随著太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”.

在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关.想想果冻的情形,轻拍一下果冻,它便会晃动,而且......余下全文>>

四:太阳是怎么形成的 为什么会发光

月球、地球都是坚硬的球体,而太阳却是一个炽热的气体大火球,它表面的温度有600万摄氏度,中心有1500万摄氏度,任何东西在太阳上都会化成气。那太阳的光和热是从哪儿来的呢?

太阳里有许多氢原子核,它们互相作用,结合成氦原子核,同时放出光和热,这叫热核反应,太阳就是用原子作燃料的大火炉。1公斤的原子燃料能抵得30亿公斤的煤。太阳的原子燃料极其丰富,千千万万年也燃不完,它将永久地供给我们光和热。

太阳为什么会发光、发热呢?它的能源是什么?

天文学家曾经设想过种种可能的来源。一个简单的想法是,太阳是一个正在燃烧的大煤球。但是仔细计算一下,像太阳那么大(比地球大130万倍)的煤球,要一直燃烧下来,也只能够烧3000多年。因为我们人类的历史有几十万年,有文字记载的文明历史也有5000多年了。太阳的“年龄”不可能比人类历史短。更何况,要是煤球,越烧越小,太阳光会很快变得越来越暗弱了。但实际上,经过近百年来的实测,太阳光度并没有什么变化。所以,煤球燃烧的想法,肯定是不对的。

另一个想法是,古代的太阳体积很大,由于收缩而发光,但计算之后,认为这个想法也不能成立。

20世纪来,随着原子物理学的发展,人们才解决了太阳能源问题。著名科学家爱因斯坦(1879-1955)发现了物体质量与能量的关系。只要有一点点质量转化为能量,其数值就十分巨大。例如1克物质相对应的能量,这相当于1万吨煤全部燃烧所放出的热量。

对于原子能的研究,使人们想到,太阳的能源可能就是原子能。观测、实验证实了这种想法。

原来,太阳主要由氢组成,氢占质量的70%以上。在太阳内部高温(在1000万K以上)、高压(约为2500亿大气压力)的条件下,氢原子会发生“热核反应”,由4个氢原子核合成为1个氦原子核。在这个反应中,有一部分质量转化为能量,放出大量的热量。太阳内部的热核反应,类似于地面上的氢弹爆炸。正因为在太阳核心区不断地发生无数的“氢弹爆炸”过程,所以源源不断地供应了太阳辐射出的光和热。原子能就是太阳的能源。

太阳从东方升起这种说法并不正确。由于地球在绕着太阳转,实际上地球是在向东方转去,迎向太阳。

五:阳光是怎样形成的?

太阳的形成

我们生来就看见天上有个太阳,从小到大都没有发现太阳有什么大的变化。就是从人类产生的那时起,人们就看到了今天这个模样的太阳。那么太阳是怎么形成的呢?

时间回溯到一百多亿年前,那时的宇宙比今天的宇宙要小许多,在宇宙的原始气体云中,银河系诞生了。同时银河系中的第一代古老的恒星诞生了。那些恒星经过漫长的过程后,在各自的大爆发中死去,它们抛出大量烧剩下来的气体,这些气体在冰冷的星际空间里游荡,一团团汇聚成一大团,其中的组成物质主要是氢和氦,还有其他的各种元素。由于万有引力的作用,大团气体开始凝缩成各个高密团块。各个团块的凝聚速度各不相同,每个团块的体积非常之大。随着时间的推移,有的团块的*近中央的部分开始加速凝聚,并产生旋转。由于气体的压缩,中间部分的温度上升。其中一个团块的中间部分的温度上升到了700万度到1000万度以上,终于爆发了热核反应。一颗新的恒星诞生了,它就是太阳,诞生的时间大约在50亿年前。空间中的剩余气体,一部分继续落入太阳,一部分由较重原子组成的物质,在绕太阳旋转过程中又各自凝聚成星体,它们就是九大行星、卫星及其他。

实在是难以想象,我们的地球,地球上的一切,包括我们的身体,居然是由已死恒星的残余物质所组成。

日冕温度之迷

太阳光球上层的温度为4500度左右,光球上面的色球温度从底部的5000度上升到顶部的几万度。按理说太阳的热源在日核,越往外温度应越低才对,为什么色球的情况相反呢?更有甚者,色球外面日冕的温度高达200万度。日冕为什么会有如此高温?这至今还是一个谜。有人解释认为:太阳内部到处都激荡着强烈的声波,某些能量的波从日面逃逸出来,从而冲击了日冕,日冕吸收了波的能量,使它温度升高。色球也是如此。

最新研究表明,日冕的高温可能是日冕物质吸收太阳表面的电磁能所产生。

日珥的温度在5000到8000度之间,一般可上升到几十万公里,形状千奇百怪。有的日珥能长期存在,奇怪的是,日珥和日冕的温度、密度相差几百倍,何以能长期共存?

太阳中微子失踪之迷

在热核反应中,有一种神奇的粒子会产生,它的质量很小,或根本没有质量,它呈电中性,穿透力极强,能毫不费力地穿过地球。这就是中微子。太阳的核心在进行着大规模的热核反应,理应产生大量的中微子。计算表明,太阳核心每秒钟将产生2×1043个中微子,在地球地面的每一平方厘米的面积上,每秒钟有几百亿个太阳中微子穿过。

科学家都要通过实验来证明一种理论的正确性。为了证明太阳模型的正确性,科学家们必须用仪器去验证,太阳中微子的实际数目是否与理论相吻合。实测结果表明,实际的太阳中微子数目远远小于理论值。大量的太阳中微子失踪了!

科学家开始迷茫,到底是我们对中微子的性质认识不足,还是原来的太阳产生能量的理论错了?难道太阳内部进行着另外只产生少量中微子方式的核反应?有人认为,可能是太阳中心的重力波改变了日核中的核反应。但“太阳中微子失踪之谜”目前还远未解决。

参考资料:这是其它地方查来的

六:太阳怎么形成的

宇宙在大爆炸后,产生的最基本的物质就是氢原子和氢分子。经过了数十亿年的积聚形成了,早期的星云团。星云团在经过100万年的时间后,中心就会形成一个密度最大、温度最高的气状圆盘,这个圆盘在自身重力的不断收缩下,温度不短升高,大约在1000万摄氏度时开始发生核聚变反映(氢、氦反应),这就形成了恒星。

简单的说,就是在一大堆气体不断向中心靠近,致使内部压力不断增大,温度也在不断增大;当压力、温度达到一定程度时氢、氦就发生核聚变反应。这使恒星就生成了。

而太阳大约在50亿年前由像上面所述的情况下形成的。

七:太阳是怎么形成的?

看过纪录片《浩瀚宇宙》吗?里面有科学家们最详尽的解释。总结起来就是这样:

两团星云碰撞在一起,形成中心密度和温度最高的就是太阳的内核,爆炸剩余的一些物质在内核引力的作用下慢慢聚集成了太阳的外壳,当然还残留着很多物质,在漫长一段时间的演变之后以太阳为核心更多的星球产生,这就形成了太阳系。

扫一扫手机访问

发表评论