一:盈亏问题应用题和答案。
1. 小朋友分梨子,如果每人分4个还多9个;如果每人分5个则少6个。问有多少个小朋友?有多少个梨子?
(9+6)÷(5-4)=15(人),15×4+9=69(个)
2. 学校买来一批图书。如果每人发9本则少25本;如果每人发6本则少7本。问有多少个学生?买了多少本图书?
(25-7)÷(9-6)=6(名),6×6-7=29(本)。
3、 参加美术活动小组的同学,分配若干支彩色笔。如果每人分5支多12支,如果每人分8支还多3支。问有多少个同学?有多少支彩色笔?
(12-3)÷(8-5)=3(人),8×3+3=27(支)
4. 一个植树小组植树,如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。这个植树小组有多少人?一共植树多少棵?
(14+4)÷(7-5)=9(人),9×5+14=59(棵)
5. 某班把若干练习本奖给三好学生,每人9本少15本,每人7本少7本,这个班有三好学生多少人?练习本有多少本?
((15-7)÷(9-7)=4(人),4×7-7=21(本)
(送面小红旗吧——最佳答案!)
二:盈亏问题
盈亏问题
例1:每猴4个桃,还剩10个桃;每猴5个桃,缺了5个桃子。
例2:每猴3个桃,还剩25个桃;每猴4个桃,剩10个桃子。
例3:每猴5个桃,还少5个桃;每猴6个桃,少20个桃子。
例4:小朋友们去划船,如果增加1条船,每条船上正好坐4人;如果减少1条船,正好每条船上坐6人,一共有学生多少人?原计划坐几条船?
例5:军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?
例6:元旦快到了,学而思学校的少先队员去摆花盆。如果每人摆5盆花,还有3盆没人摆;如果其中2人摆4盆,其余的人各摆6盆,这些花盆正好摆完,问有多少少先队员参加摆花盆活动,一共摆多少花盆?
盈亏问题精讲
何为盈亏?在我们分东西时,比如给猴子分桃时,可能不够,也可能会剩下。当多了、剩下了、余下了,我们叫做“盈”;当少了、不够了、缺了,我们叫做“亏”。盈亏问题一般会涉及两次分配。但是注意:我们以给猴子分桃为例,在这两次分配过程中,猴子的只数是不变的,桃子的个数是不变的。
在给猴子分桃子时:我们是把桃子分给猴子,把分的东西“桃子”叫分配对象;而猴子是接受桃子的,把接受东西的叫接受对象。
一 直接型盈亏问题
(一)【盈亏型】
(1)例1:每猴4个桃,还剩10个桃;每猴5个桃,缺了5个桃子。
(2)分析:1、理解分配时,可以分别用“盈”来表示(盈余、多了,还剩);“亏”
表示(缺、少了,不够)。
2、第二次分配建立在第一次分配的基础上,只需要再给每只猴5-4=1个桃子,因为第一次分配后盈10个桃子,第二次分完亏5个桃子,所以得出,第二次分配应该再分10+5=15个桃子。
3、15个桃子对应的是每只猴子得到1个桃子,所以求猴子的只数列式为:(10+5)÷(5-4)=15(只)
桃子的个数为:15×4+10=70(个)
(3)总结公式:第一次分配剩下10个,即盈10;第二次分配缺了5个,即亏5.
【盈亏型】(盈+亏)÷两次分配差=人数或单位数
(二)【盈盈型】
(1)例2:每猴3个桃,还剩25个桃;每猴4个桃,剩10个桃子。
(2)分析:1、第二次分配建立在第一次分配的基础上,只需要再给每只猴4-3=1个桃子,因为第一次分配后盈25个桃子,第二次分完盈10个桃子,所以得出,第二次分配应该再分25-10=15个桃子。
2、15个桃子对应的是每只猴子得到1个桃子,所以求猴子的只数列式为:(25-10)÷(4-3)=15(只)
桃子的个数为:15×4+10=70(个)
(3)总结公式:第一次分配剩下25个,即盈25;第二次分配剩下10个,即盈10,我们把大的叫:“大盈”,小的叫:“小盈”
【盈盈型】(大盈-小盈)÷两次分配差=人数或单位数
(三)【亏亏型】
(1)例3:每猴5个桃,还少5个桃;每猴6个桃,少20个桃子。
(2)分析:1、第二次分配建立在第一次分配的基础上,只需要再给每只猴6-5=1个桃子,因为第一次分配后亏5个桃子,第二次分完亏20个桃子,所以得出,第二次分配应该再分20-5=15个桃子。
2、15个桃子对应的是每只猴子得到1个桃子,所以求猴子的只数列式为:(20-5)÷(6-5)=15(只)
桃子的个数为:15×5-5=70(阀)
(3)总结公式:第一次分配少5个,......余下全文>>
三:盈亏问题的解决方法
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。凡是研究盈和亏这一类算法的应用题就叫盈亏问题。 一般解法:(盈数+亏数)除以两次分配只能够每份的差=所分对象数,物品数可由其中一种分法的份数和盈亏数求出。 其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。 盈亏临界点计算的基本模型 设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为: 盈亏临界点的计算,可以采用实物和金额两种计算形式: 1.按实物单位计算: 其中,单位产 设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8 000元,则盈亏临界点的销售量(实物单位)=8 000÷(10-6)=2 000(件)。品贡献毛益=单位产品销售收入-单位变动成本 2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率 其中,贡献毛益率=贡献毛益/ 销售收入
四:盈亏问题中的两亏指什么情况
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
盈亏问题的关系式: 1、(盈+亏)÷两次分配的差=份数 2、(大盈-小盈)÷两次分配的差=份数 3、(大亏-小亏)÷两次分配的差=份数 每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量。