三角形的内切圆半径

一:直角三角形和普通三角形内切圆半径公式是什么?

直角三角形:内切圆半径为r=(a+b-c)/2 (a,b为直角边,c为斜边)

一般三角形的内切圆半径为r=2S/(a+b+c),S是三角形的面积公式

(其中S=√p(p-a)(p-b)(p-c),p是半周长)

二:知道三角形三边,求内切圆半径,方法? 20分

内切圆;2sinA

cosA=(b^2+c^2-a^2)/:S=[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/sinC=2R

由此可知: a/[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/sinA=b/2bc

R=abc/2]/:r=2S/2bc,c为三边长)

由海轮公式得;sinB=c/:R=a/,b;a+b+c(S为三角形面积;

sinA=[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/,a;2]外接圆

扫一扫手机访问

发表评论