石墨烯机械剥离法

一:什么是机械剥离法

机械剥离法即直接将石墨烯薄片从较大的晶体上剥离下来,方法如下:

二:氧化还原石墨烯和机械剥离法石墨烯哪一种好

石墨烯的研究热潮也吸引了国内外材料植被研究的兴趣,石墨烯材料的制备方法已报道的有:机械剥离法、化学氧化法、晶体外延生长法、化学气相沉积法、有机合成法和碳纳米管剥离法等。

1、微机械剥离法

2004年,Geim等首次用微机械剥离法,成功地从高定向热裂解石墨(highly oriented pyrolytic graphite)上剥离并观测到单层石墨烯。Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,目前只能作为实验室小规模制备。

2、化学气相沉积法

化学气相沉积法(Chemical Vapor Deposition,CVD)首次在规模化制备石墨烯的问题方面有了新的突破(参考化学气相沉积法制备高质量石墨烯)。CVD法是指反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。

麻省理工学院的Kong等、韩国成均馆大学的Hong等和普渡大学的Chen等在利用CVD法制备石墨烯。他们使用的是一种以镍为基片的管状简易沉积炉,通入含碳气体,如:碳氢化合物,它在高温下分解成碳原子沉积在镍的表面,形成石墨烯,通过轻微的化学刻蚀,使石墨烯薄膜和镍片分离得到石墨烯薄膜。这种薄膜在透光率为80%时电导率即可达到1.1×106S/m,成为目前透明导电薄膜的潜在替代品。用CVD法可以制备出高质量大面积的石墨烯,但是理想的基片材料单晶镍的价格太昂贵,这可能是影响石墨烯工业化生产的重要因素。CVD法可以满足规模化制备高质量石墨烯的要求,但成本较高,工艺复杂。

3、氧化-还原法

氧化-还原法制备成本低廉且容易实现,成为制备石墨烯的最佳方法,而且可以制备稳定的石墨烯悬浮液,解决了石墨烯不易分散的问题。氧化-还原法是指将天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。

氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的最简便的方法,得到广大石墨烯研究者的青睐。Ruoff等发现通过加入化学物质例如二甲肼、对苯二酚、硼氢化钠(NaBH4)和液肼等除去氧化石墨烯的含氧基团,就能得到石墨烯。氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。

氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。

4、溶剂剥离法

溶剂剥离法的原理是将少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。在氮甲基吡咯烷酮中石墨烯的产率最高(大约为8%),电导率为6500S/m。研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。缺点是产率很低。

5、溶剂热法

溶剂热法是指在特制的密闭反应器(高压釜)中,采用有机溶剂作为反应介质,通过将反应体系加热至......余下全文>>

三:如何将类石墨烯进行层剥离

您好

1.1微机械剥离法石墨烯最早是通过微机械剥离法制得的。2004年,曼彻斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。该法虽然可以获得质量较好的单层和双层石墨烯,能部分满足实验室的研究需要,但产量和效率过低,高质量的石墨烯的规模制备成为人们追求的目标。 1.2氧化石墨还原法近年来,人们不断的探索新方法以提高石墨烯的产量,其中氧化还原法由于其稳定性而被广泛采用。这种方法首先制备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得到石墨烯。然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经 1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯功能复合材料的基础。1.3石 墨层间化合物途径石墨插层复合物是以天然鳞...

四:石墨烯用什么制成来

制备石墨烯常见的方法为机械剥离法、氧化还原法、SiC外延生长法和化学气相沉积法(CVD)。

1、机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构,但是得到的片层小,生产效率低。[2]

2、氧化还原法是通过将石墨氧化,增大石墨层之间的间距,再通过物理方法将其分离,最后通过化学法还原,得到石墨烯的方法。这种方法操作简单,产量高,但是产品质量较低。[3]

3、SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。

4、CVD是目前最有可能实现工业化制备高质量、大面积石墨烯的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。

五:液相剥离制备的石墨烯纳米片为什么要分散在dmf中

可能是为了防止已经剥离的纳米片再团聚吧!早期理论预言,完全平整的单层石墨烯是不会稳定存在的。虽然后来实验制备出了单层石墨烯,并且研究表明石墨烯表面并不是完全平整,而是微微呈波状起伏(有利于单层石墨烯稳定存在);但完全游离的(尤其是面积较大的)石墨烯截止目前并没有被人观察到,经常取而代之的是,在衬底上的(或者依托于衬底的)石墨烯,或分散在溶液中的石墨烯。种种迹象表明,也许单层石墨烯能稳定存在,是石墨烯与衬底或溶液的相互作用所致的。这也许对你理解剥离的石墨烯要分散在DMF中,会有所帮助。

六:物理法制备石墨烯的几种方法

石墨烯具有独特的结构和优异的性能, 近年来在化学、物理和材料学界引起了广泛的研究兴趣,并且在石墨烯的制备上已取得了不少的进展。本文就物理方法方面概述了石墨烯的制备方法。  物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。机械剥离法制备石墨烯  机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm~2 mm、深5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯捞出。  但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。取向附生法晶膜生长制备石墨烯  Peter W.Sutter 等使用稀有金属钌作为生长基质,利用基质的原子结构种出了石墨烯。首先在 1150 °C下让C原子渗入钌中,然后冷却至850 °C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子孤岛,孤岛逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80 %后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。液相和气相直接剥离法制备石墨烯  液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000 °C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将石墨分散在N-甲基-吡咯烷酮 (NMP) 中,超声1h 后单层石墨烯的产率为1%,而长时间的超声(462 h)可使石墨烯浓度高达1.2 mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2。利用气流的冲击作用能够提高剥离石墨片层的效率。Janowska 等以膨胀石墨为原料,微波辐照下发现以氨水做溶剂能提高石墨烯的总产率(~8%)。深入研究证实高温下溶剂分解产生的氨气能渗入石墨片层中, 当气压超过一定数值至足以克服石墨片层间的范德华力时就能使石墨剥离。

七:石墨烯制备

1.1微机械剥离法

石墨烯最早是通过微机械剥离法制得的。2004年,曼彻

斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,

成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。

该法虽然可以获得质量较好的单层和双层石墨烯,能部分满

足实验室的研究需要,但产量和效率过低,高质量的石墨烯的

规模制备成为人们追求的目标。

1.2氧化石墨还原法

近年来,人们不断的探索新方法以提高石墨烯的产量,其

中氧化还原法由于其稳定性而被广泛采用。这种方法首先制

备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓

硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到

氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得

到石墨烯。

然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经

1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是

含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功

能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯

功能复合材料的基础。1.3石 墨层间化合物途径

石墨插层复合物是以天然鳞片石墨为原料,通过在层间

插入非碳元素的原子、分子、离子甚至原子团使层间距增大,

层间作用力减小,形成层间化合物。有人曾在膨胀石墨中加

入插入剂,并利用热振动或酸处理使它部分剥离,从而得到石

墨片或石墨烯[6-8]。但该法得到的石墨烯大小不一,尺寸难以

控制。

如果某种溶剂与单层石墨的相互作用超过石墨层与层之

间的范德华力,那么即可通过嵌入溶剂将石墨层剥离开。Li

等通过热膨胀使石墨层间距增大,再用发烟硫酸插层进一步

增大层间距,最后加入四丁基氢氧化铵,经超声、离心得到稳

定分散在有机溶剂中的石墨烯[9]。借鉴分散碳纳米管的方

法,在极性有机溶剂中超声处理石墨粉也可以得到多层(<5)的石墨烯。Lotya等通过在水一表面活性剂中超声剥离石墨,

得到稳定的石墨烯悬浮液[1…。

与氧化石墨法相比,石墨插层化合物途径制得的石墨烯

结构缺陷少,质量高,但是有机溶剂和表面活性剂难以完全除

去,影响石墨烯的电学性能,而且部分有机溶剂价格昂贵。

1.4沉积生长法

沉积生长法通过化学气相沉积在绝缘表面(例如SiC)或

金属表面(例如Ni)生长石墨烯,是制备高质量石墨烯薄膜的

重要手段。有研究者通过对Si的热解吸附,实现了在以si终

止的单晶6H—SiC的(0001)面上外延生长石墨烯膜或通过真

空石墨化在单晶SiC(0001)表面外延生长石墨烯。Hannon

等[11]在SiC表面上外延生长了石墨烯膜,但是由于SiC在高

温下易发生表面重构,导致表面结构复杂,难以获得大面积、

厚度均一的石墨烯膜。Emtsev等[12]在氩气中通过前位石墨

化在si终止的SiC(0001)表面制备出了单层石墨烯薄膜,薄

膜的厚度和质量都有所提高。

近年来,以金属单晶或薄膜为衬底外延生长石墨烯膜的

研究取得很大进展。Sutter等[13]在Ru(0001)表面逐层控制地外延生长了大面积的石墨烯膜,制备过程中,首层石墨烯与

金属作用强烈,而从第二层起就可以保持石墨烯固有的电子

结构和性质。Coraux等[14]利用低压气相沉积法在Ir(111)表

面生长了单层石墨烯膜。采用类似的方法,在Cu箔表面也能

制备出大面积、高质量石墨烯膜,而且主要为单层石墨烯。而

韩国科学家则在多晶Ni薄膜上外延生长了石墨烯膜[1…,他们

先在si-......余下全文>>

八:石墨烯怎么制作

现在用得较多的是氧化还原方法,先将石墨烯氧化得到氧化石墨(用浓硫酸、高锰酸钾、硝酸将石墨烯膨胀,在石墨层面上插上了许多的基团)后将这下基团由还原剂还原得到石墨烯

九:海淀的房子是不是超级贵啊

有的超级贵,有的还可以订看跟谁比了,和朝阳比差不多,和其他区比是很贵了

好点的住宅基本在8500-16000之间,好点的写字楼在1w-1.8w之间

租的话,住宅1居都在1300-2500,2局都在1800-4000,3居都在2500-6000

十:为什么石墨烯处理器能够达到1THz

1、化学制备的石墨烯都有一定的拓扑或性能缺陷,难以用于石墨烯CPU或者电子学材料。

氧化-还原法的缺点是制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些将导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制,

气相沉积法所得的石墨烯相对机械剥离法制备的石墨烯难以转移;一些使用气相沉积法所得石墨烯中没发现量子霍尔效应,说明气相沉积法可能会影响石墨烯的某些特性,

而完全无缺陷的石墨烯我们叫它原始石墨烯,由于其二维性质,电荷分数化(低维物质的单独准粒子的表观电荷小于单位量子)会发生于石墨烯。因此,原始石墨烯是制造量子计算机所需要的任意子元件的合适材料。

高定向热裂解石墨、鳞片石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学,包括今后制作CPU,提供了一种思路,缺点是产率低。

2、石墨烯CPU可能的工艺路线图:

a、单电子晶体管(SET)方向

SET是利用Coulomb阻塞效应来工作的一种量子器件。SET具有功耗低、灵敏度高和集成容量大等突出的优点, 现在被认为是传统的微电子MOS器件之后最有发展前途的新型纳米器件之一,相关工艺很可能成为纳米电子学,也可能是高集成度石墨烯CPU的核心工艺。但目前受微细加工技术水平和寄生电容的限制;难控制的残留电荷使得SET的集成化比较困难。

最近利用电子束光刻与干刻蚀的方法已经将同一片石墨烯加工成量子点、引线和栅极,获得了室温下可以操作的石墨烯基单电子场效应管,解决了目前单电子场效应由于纳米尺度材料的不稳定性所带来的操作温度受限问题,至少暗示可以借用现在的MOS工艺稍加改造制作石墨烯SET。

b、双层石墨烯场效应管(FET)方向

在两层石墨烯之间加电压打破对称性,可以在几百meV的范围调节带隙。使之可以用于未来的微处理器。用这种方法几乎可以借用现在的MOS工艺稍加改造制作石墨烯CPU,换种说法:使用双层石墨烯的FET有可能获得高的导通/截止比。例如有人将栅长缩小至20~15nm,在导通电流、导通/截止比及S因子等特性方面,可获得与最尖端的Si-MOSFET匹敌的性能。比如,导通/截止比可改善至104左右,S因子可改善至110mV/dec,导通电流超过英特尔的32nm工艺的逻辑LSI用MOSFET。

C、利用石墨烯纳米带的量子限制

通过尺寸效应或量子受限(如在石墨烯纳米带) 引入能隙。对于手性纳米带,导带与价带间的带隙随着手性角的变化发生振荡,对于某些类型的石墨烯纳米带,通过调节纳米带宽实现对带隙宽度的调节(能隙与纳米带宽之间存在反比关系)。基于以上带隙调制原理石墨烯场效应晶体管。通过在双层石墨烯纳米线中引入几何形状(比如弯管和边角等),可以有效地切断电流,将石墨烯设置成二维的蜂巢结构,通过一个独特的管道结构,制作石墨烯场效应晶体管(GFETs)可将开关频率提高了1000多倍,将几何形状引入石墨烯管道内是一个新想法,该方法在让GFETs保持结构简单的同时获得卓越的性能,借此可以超越目前已有的CMOS技术,研发出更加高级的晶体管因此,可以很容易实现商业化生产。

后两条路线更容易使用常规加工技术, 甚至可能在一片石墨烯上直接加工出各种半导体器件和互连线, 制作全碳集成电路。

3、CPU级石墨烯大致的要求:

微电子......余下全文>>

扫一扫手机访问

发表评论