一:能量均分定理的定理简介
能量均分定理是一种联系系统温度及其平均能量的基本公式。能量均分定理又被称作能量均分定律、能量均分原理、能量均分,或仅称均分。能量均分的初始概念是热平衡时能量被等量分到各种形式的运动中;例如,一个分子在平移运动时的平均动能应等于其做旋转运动时的平均动能。
能量均分定理能够作出定量预测。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以计算出系统的总平均动能及势能,从而得出系统的热容。均分定理还能分别给出能量各个组分的平均值,如某特定粒子的动能又或是一个弹簧的势能。例如,它预测出在热平衡时理想气体中的每个粒子平均动能皆为(3/2)kBT,其中kB为玻尔兹曼常数而T为温度。更普遍地,无论多复杂也好,它都能被应用于任何处于热平衡的经典系统中。能量均分定理可用于推导经典理想气体定律,以及固体比热的杜隆-珀蒂定律。它亦能够应用于预测恒星的性质,因为即使考虑相对论效应的影响,该定理依然成立。
二:能量均分定理的基本概念及简易例子
参见:动能及理想气体名字里面的“均分”是指“摊分或类似于摊分”。能量均分定理的原始概念是,当系统平均而言一达到热平衡时,系统的总动能由各独立分量所等分。均分定理也为这些能量做出量化的预测。例如它预测惰性气体的每一个原子,当于温度T达至热平衡时,会有平移平均动能(3/2)KBT,其中KB为波兹曼常数。随此引出的是,在等温时氙的重原子速度会比氦的较轻原子要低。图二显示的是四种惰性气体原子速度的麦克斯韦-波兹曼分布。在这例子中,关键点是动能被速度所二次化。均分定理显示出于热平衡时,任何在能量中只以二次出现的自由度(例如是一粒子的位置或速度的一个分量)有着等于½KBT的平均能量,并因此向系统的热容提供了½KB。这个结果有着许多的应用。 参见:理想气体一粒子质量为m,速度为v,其(牛顿力学)动能为:其中vx、vy及vz是速度v的直角坐标的分量。这里,H是哈密顿量,由于哈密顿表述是均分定理一般形式的中心,故下文将以其作为能量的符号。由于能量是速度各分量的二次方,均分这三分量得每分量在热平衡时向平均动能提供½kBT。因此粒子的平均动能为(3/2)kBT,跟上面惰性气体的例子一样。更普遍地,理想气体中的,总能量几乎全为(平移)动能:假定粒子无内自由度且运动不受其他粒子影响。均分因此预测有N个粒子的理想气体有平均总能量(3/2) N kBT。而气体的热容则为(3/2) N kB,因此这样一摩尔气体的热容为(3/2)NAkB=(3/2)R,其中NA是阿伏伽德罗常数,而R则是气体常数。由于R ≈ 2 Cal/(mol·K),均分预测理想气体的摩尔比热容约为3 Cal/(mol·K)。这个预测已被实验证实。从平均动能可以求出气体粒子的均方根速度vrms:其中M = NAm是一摩尔气体粒子的质量。这个结果对很多应用方面都有用处,例如逸散用的格锐目定律为铀浓缩提供了一个方法。 参见:角速度及旋转渗透在另一个相近的例子中,有一粒子其主转动惯量I1、I2及I3。它的旋转能量是:其中ω1、ω2及ω3是角速度的主分量。使用跟平移同一套的论证,均分意味着每个粒子的平均旋转能量为(3/2)KBT。同样地,均分使计算出分子平均角速度(更准确来说应是均方根速度)成为可能。刚性粒子的滚翻——即是分子于溶液中的随机旋转——在核磁共振中观测到弛缓中有着重要的角色,尤其是在蛋白质核磁共振及剩余双极耦合中。 旋转渗透可被其他生物物理探测法所观测到,例如是萤光异向性、流动双折射及介电质光谱学。 均分定理除可应用于动能外,还能被应用于势能计算:重要例子包括像弹簧这样的谐波振荡器,其二次势能为其中常数a描述弹簧的韧性,而q则是由平衡导出的。假若这样一个系统的质量为m,那么它的动能H为½mv=p/2m,其中v及p=mv代表振荡器的速度和动量。联合这些项可得总能量:因此均分定理预测在热平衡时,振荡器有平均能量其中角括号代表括号内的平均量。这个结果对任何种类的谐波振荡器都是有效的,例如钟摆,一个振动中的粒子或是被动的电子振荡器。这样的振荡器在很多情况下都会出现;由均分可得,每个这样的振荡器都得到一个平均总能量kBT并因此向系统热容提供kB。这个可以被用于导出热杂音的公式 及固体摩尔比热容的杜隆-珀蒂定律公式。后者在均分定理的历史中尤其重要。 均分定理的一个重要应用是在于晶状固体的比热容。如此固体的每一个原子都能够在三个独立的方向下振荡,因此该固体可以被视为一个拥有各自独立的......余下全文>>
三:能量均分定理的介绍
在经典统计力学中,1能量均分定理是一种联系系统温度及其平均能量的基本公式。能量均分定理又被称作能量均分定律、能量均分原理、能量均分,或仅称均分。能量均分的初始概念是热平衡时能量被等量分到各种形式的运动中;例如,一个分子在平移运动时的平均动能应等于其做旋转运动时的平均动能。2能量均分定理能够作出定量预测。类似于均功定理,对于一个给定温度的系统,利用均分定理,可以计算出系统的总平均动能及势能,从而得出系统的热容。均分定理还能分别给出能量各个组分的平均值,如某特定粒子的动能又或是一个弹簧的势能。例如,它预测出在热平衡时理想气体中的每个粒子平均动能皆为(3/2)kBT,其中kB为玻尔兹曼常数而T为温度。更普遍地,无论多复杂也好,它都能被应用于任何处于热平衡的经典系统中。能量均分定理可用于推导经典理想气体定律,以及固体比热的杜隆-珀蒂定律。它亦能够应用于预测恒星的性质,因为即使考虑相对论效应的影响,该定理依然成立。
四:能量均分定理的详细内容
能量均分定理作出对数量相关的预测。跟均功定理一样,可由指定的系统温度计算出系统热容从而得出系统的总平均动能及势能 。但是,均分定理还能分别给出能量各个部份的平均值,如某粒子的动能又或是弹簧的势能。例如说,它预测出在热平衡时一理想气体的每个粒子平均动能皆为(3/2)kBT,其中k 或kB为玻尔兹曼常数而T为温度。更普遍地,无论多复杂也好,它都能被应用于任何热平衡的古典系统中。能量均分定理被用于推导古典理想气体定律,以及固体比热的杜隆珀替定律。 它亦能够被应用于预测恒星的性质,由于甚至不受相对论效应影响的关系亦适用于白矮星及中子星。
五:关于能量均分定理
能均分定理的具体内容为:哈密顿量中的每个平方项对系统热容的平均贡献为kT/2. 注意,只要是平方项就行,与该项的系数无关,从而与分子种类无关(分子种类反映在质量上,而质量是动能项的系数)。
希望对你能有所帮助。