生活中的抽屉原理

一:什么是抽屉原理

抽屉原理

一、 知识要点

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。

其中 k= (当n能整除m时)

〔 〕+1 (当n不能整除m时)

(〔 〕表示不大于 的最大整数,即 的整数部分)

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

二、 应用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。

证明:将5名学生看作5个苹果

将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉

由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。

即至少有两名学生在做同一科的作业。

例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉

若要符合题意,则小球的数目必须大于3

大于3的最小数字是4

故至少取出4个小球才能符合要求

答:最少要取出4个球。

例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果

根据原理1,书的数目要比学生的人数多

即书至少需要50+1=51本

答:最少需要51本。

例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

解:把这条小路分成每段1米长,共100段

每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果

于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果

即至少有一段有两棵或两棵以上的树

例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本

试证明:必有两个学生所借的书的类型相同

证明:若学生只借一本书,则不同的类型有A、B、C、D四种

若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种

共有10种类型

把这10种类型看作10个“抽屉”

把11个学生看作11个“苹果”

如果谁借哪种类型的书,就进入哪个抽屉

由抽屉原理,至少有两个学生,他们所借的书的类型相同

例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜

试证明:一定有两个运动员积分相同

证明:设每胜一局得一分

由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能

以这49种可能得分的情况为49个抽屉

现有50名运动员得分

则一定有......余下全文>>

二:生活中哪儿可以用到抽屉原理???不是要题目。

这个,还真不多。

一类是很简珐的,让人意识不到与抽屉原理的关系。比如抢凳子游戏,一群人抢凳子,凳子数比人少,必然淘汰一些人。

另一类是大基数的社会现象,常给人感觉世事很奇巧。如碰到同生日、同名的人等。

三:抽屉原理怎么解释

原理就是现在有多个抽屉有比抽屉个数多的物体往抽屉里面放那首先要先保证每个抽屉里面都有物体,换句话说,先保证不让空抽屉出现等每个抽屉都有1个物体了,再往随便哪个抽屉里面放一个物体。依次类推,直到每个抽屉都有两个物体了,再到每个抽屉都有三个物体。。。。。。

四:抽屉原理 的问题怎样做

一、 知识要点

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。

其中 k= (当n能整除m时)

〔 〕+1 (当n不能整除m时)

(〔 〕表示不大于 的最大整数,即 的整数部分)

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

二、 应用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、 教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。

证明:将5名学生看作5个苹果

将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉

由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。

即至少有两名学生在做同一科的作业。

例2、 木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉

若要符合题意,则小球的数目必须大于3

大于3的最小数字是4

故至少取出4个小球才能符合要求

答:最少要取出4个球。

例3、 班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果

根据原理1,书的数目要比学生的人数多

即书至少需要50+1=51本

答:最少需要51本。

例4、 在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

解:把这条小路分成每段1米长,共100段

每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果

于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果

即至少有一段有两棵或两棵以上的树

例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本

试证明:必有两个学生所借的书的类型相同

证明:若学生只借一本书,则不同的类型有A、B、C、D四种

若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种

共有10种类型

把这10种类型看作10个“抽屉”

把11个学生看作11个“苹果”

如果谁借哪种类型的书,就进入哪个抽屉

由抽屉原理,至少有两个学生,他们所借的书的类型相同

例6、 有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜

试证明:一定有两个运动员积分相同

证明:设每胜一局得一分

由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能

以这49种可能得分的情况为49个抽屉

现有......余下全文>>

五:什么是抽屉原理?

抽屉原理被称为鸽巢原理。它是组合数学中一个重要的原理

扫一扫手机访问

发表评论