迈克尔逊干涉原理

一:急求迈克尔逊干涉仪原理

迈克尔逊干涉仪的结构和工作原理

G2是一面镀上半透半反膜,M1、M2为平面反射镜,M1是固定的,M2和精密丝相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm, M1和M2后各有几个小螺丝可调节其方位。当M2和M1’严格平行时,M2移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“消失”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”一个个条纹。M2和M1’不严格平行时,则表现为等厚干涉条纹,M2移动时,条纹不断移过视场中某一标记位置,M2平移距离 d 与条纹移动数 N 的关系满足。

迈克尔逊干涉仪示意

经M2反射的光三次穿过分光板,而经M1反射的光只通过分光板一次.补偿板就是为了消除这种不对称而设置的.在使用单色光源时,补偿板并非必要,可以利用空气光程来补偿;但在复色光源时,因玻璃和空气的色散不同,补偿板则是不可缺少的。

若要观察白光的干涉条纹,两相干光的光程差要非常小,即两臂基本上完全对称,此时可以看到彩色条纹;若M1或M2稍作倾斜,则可以得到等厚的交线处(d=0)的干涉条纹为中心对称彩色直条纹,中央条纹由于半波损失为暗条纹。

参考资料:www.bb.ustc.edu.cn/...n.html

二:迈克尔逊干涉仪的工作原理

从半导体激光器输出的光,耦合到光纤中,经过耦合器分束进入干涉仪的两条光纤臂中,在光纤臂的两端直接镀上反射膜以实现传统分立元件迈克尔逊干涉仪中两反射镜的功能,由此反射回来的光再经耦合器汇合,形成干涉,由探测器进行检测。

该干涉仪最大特点是光路全封闭,光纤两臂可绕成任意形状,结构灵活,抗电磁干扰,对被测介质影响小,适应性强等特点,因此,它的应用可以延伸到许多传统干涉仪的禁区,例如用于恶劣环境的高灵敏度传感、水声探测和地下核爆核查测试。它是许多高灵敏度光纤传感器的重要物理基础。由于光纤两个反射臂中的光传导特性可以受激温度、压力等外在条件的影响,所以,光纤迈克尔逊干涉仪可以实现光纤应变、温度等物理量的测量。

三:迈克尔逊干涉仪有哪些部分组成?它们各有什么作用

迈克尔逊干涉仪主要有:两个相互垂直的反射镜,可以产生反射光干涉;两个严格相同的斜45度透镜,其中一个镀有半反半透膜,作用是反射光线和补偿光程;导轨,可以移动M1反射镜。这几部分组成。

扫一扫手机访问

发表评论