一:主成分分析在数学建模中的应用及详细的步骤
分析步骤:
数据标准化;求相关系数矩阵;
一系列正交变换,使非对角线上的数置0,加到主对角上;
得特征根系(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;
求各个特征根对应的特征向量;
用下式计算每个特征根的贡献率Vi;Vi=xi/(x1+x2+........)
根据特征根及其特征向量解释主成分物理意义。
主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实际问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太 多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
参考础baike.baidu.com/view/855712.htm
二:主成分分析法的主要目的
是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。
三:主成分分析法有什么缺点?
建模的孩子伤不起啊。
四:如何有效利用主成分分析中的主成分
主成分分析方法是一种将多个指标化为少数几个不相关的综合指标(即主成分)的多元统计分析方法.由于其具有消除各指标不同量纲的影响,以及消除指标间相关性所带来的信息重叠等优点,近几年,该方法在社会经济、管理、自然科学等众多领域得到了广泛的应用,尤其是被用于系统综合评价.在使用主成分分析方法做综合评价的过程中,由于部分学者对主成分分析的原理及主成分的定义理解不深,出现了不少错误.本文通过分析主成分分析的原理及综合评价的特点,从理论和实际例子上证实了有关文献作者在用主成分做综合评价过程中某些做法的不合理性.给出了主成分做综合评价的充要条件,阐明了主成分所含信息量的大小与综合水平之间的差异,为充分利用形状因子(反映指标间结构性差异的主成分)提供的有效信息,提出了一种定性与定量相结合的评价体系.并通过一个实例讲解了评价过程.
望采纳,谢谢
五:什么是主成分分析方法?
主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.
六:主成分分析法和聚类分析法的区别
我以前回答过这个问题,你参考一下吧
zhidao.baidu.com/...搁伟功连ml
七:主成分分析和聚类分析应用在哪些领域
主成分分析法在过程中产生新变量,而聚类分析法在过程中没有产生新变量。
主成分分析法:一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
聚类分析法:理想的多变量统计技术,主要有分层聚类法和迭代聚类法。是研究分类的一种多元统计方法。你现在有了每个样本的主成分分值,用这些分值,对这些样本进行分类。 就是说,每个样本现在有三个值了,就是三个主成分的值,现在要看看那些样本比较相似。
八:主成分分析(PCA)的主要作用是什么呢?
主成分分析试郸在力保数据信息丢失最少的原则下,用较少的综合变量代替原本较多的变量,而且综合变量间互不相关。