蚁群算法模型

一:蚁群算法中的人工蚁群模型怎么定义

人工蚁群的模型,现在定义的有:AS、MMAS、ACS三种。

具体定义的方法可以找本书蚁群算法的书看看。

二:蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪些问题!

概念:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值

其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序

应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内

引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点: 1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。 引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样互不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。 既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。 其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。

具体参考baike.baidu.com/view/539346.htm

希望对你有帮助,谢......余下全文>>

三:蚁群算法及其应用的目录

第1章 绪论1.1 蚂蚁的基本习性1.1.1 蚂蚁的信息系统1.1.2 蚁群社会的遗传与进化1.2 蚁群觅食行为与觅食策略1.2.1 蚂蚁的觅食行为1.2.2 蚂蚁的觅食策略1.3 人工蚁群算法的基本思想1.3.1 人工蚁与真实蚂蚁的异同1.3.2 人工蚁群算法的实现过程1.4 蚁群优化算法的意义及应用1.4.1 蚁群优化算法的意义l.4.2 蚁群算法的应用1.5 蚁群算法的展望第2章 蚂蚁系统——蚁群算法的原型2.1 蚂蚁系统模型的建立2.2 蚁量系统和蚁密系统的模型2.3 蚁周系统模型第3章 改进的蚁群优化算法3.1 带精英策略的蚂蚁系统3.2 基于优化排序的蚂蚁系统3.3 蚁群系统3.3.1 蚁群系统状态转移规则3.3.2 蚁群系统全局更新规则3.3.3 蚁群系统局部更新规则3.3.4 候选集合策略3.4 最大一最小蚂蚁系统3.4.1 信息素轨迹更新3.4.2 信息素轨迹的限制3.4.3 信息素轨迹的初始化3.4.4 信息素轨迹的平滑化3.5 最优一最差蚂蚁系统3.5.1 最优一最差蚂蚁系统的基本思想3.5.2 最优一最差蚂蚁系统的工作过程第4章 蚁群优化算法的仿真研究4.1 蚂蚁系统三类模型的仿真研究4.1.1 三类模型性能的比较4.2.2 基于统计的参数优化4.2 基于蚁群系统模型的仿真研究4.2.1 局部优化算法的有效性4.2.2 蚁群系统与其他启发算法的比较4.3 最大一最小蚂蚁系统的仿真研究4.3.1 信息素轨迹初始化研究4.3.2 信息素轨迹量下限的作用4.3.3 蚁群算法的对比4.4 最优一最差蚂蚁系统的仿真研究4.4.1 参数ε的设置4.4.2 几种改进的蚁群算法比较第5章 蚁群算法与遗传、模拟退火算法的对比5.1 遗传算法5.1.1 遗传算法与自然选择5.1.2 遗传算法的基本步骤5.1.3 旅行商问题的遗传算法实现5.2 模拟退火算法5.2.1 物理退火过程和Metroplis准则5.2.2 模拟退火法的基本原理5.3 蚁群算法与遗传算法、模拟退火算法的比较5.3.1 三种算法的优化质量比较5.3.2 三种算法收敛速度比较5.3.3 三种算法的特点与比较分析第6章 蚁群算法与遗传、免疫算法的融合6.1 遗传算法与蚂蚁算法融合的GAAA算法6.1.1 遗传算法与蚂蚁算法融合的基本思想……第7章 自适应蚁群算法第8章 并行蚁群算法第9章 蚁群算法的收敛性与蚁群行为模型第10章 蚁群算法在优化问题中的应用附录参考文献

四:蚁群算法的执行结果一定收敛与全局最优解吗?

什么是启发式算法转自:p://blog.csdn.net/aris_zzy/archive/2006/05/27/757156.aspx引言:解决实际的问题,要建模型,在求解。求解要选择算法,只有我们对各种算法的优缺点都很熟悉后才能根据实际问题选出有效的算法。但是对各种算法都了如指掌是不现实的,但多知道一些,会使你的选择集更大,找出最好算法的概率越大。现在研一,要开题了些点文献综述,愿与大家分享。大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律,也有来自人类积累的工作经验。启发式算法的发展:启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,取得了巨大的成就。40年代:由于实际需要,提出了启发式算法(快速有效)。50年代:逐步繁荣,其中 贪婪算法和局部搜索 等到人们的关注。60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规 模的问题仍然无能为力(收敛速度慢)。启发式算法的不足和如何解决方法:(水平有限 仅仅提出6点)启发式算法目前缺乏统一、完整的理论体系。很难解决! 启发式算法的提出就是根据经验提出,没有什么坚实的理论基础。由于NP理论,启发式算法就解得全局最优性无法保证。等NP?=P有结果了再说吧,不知道这个世纪能不能行。各种启发式算法都有个自优点如何,完美结合。如果你没有实际经验,你就别去干这个,相结合就要做大量尝试,或许会有意外的收获。启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。还是那句话,这是经验活但还要悟性,只有try again………..启发算法缺乏有效的迭代停止条件。还是经验,迭代次数100不行,就200,还不行就1000…………还不行估计就是算法有问题,或者你把它用错地方了………..启发式算法收敛速度的研究等。你会发现,没有完美的东西,要快你就要付出代价,就是越快你得到的解也就远差。其中(4)集中反映了超启发式算法的克服局部最优的能力。  虽然人们研究对启发式算法的研究将近50年,但它还有很多不足:1.启发式算法目前缺乏统一、完整的理论体系。2.由于NP理论,各种启发式算法都不可避免的遭遇到局部最优的问题,如何判断3.各种启发式算法都有个自优点如何,完美结合。4.启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。5.启发算法缺乏有效的迭代停止条件。6.启发式算法收敛速度的研究等。70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。 由此必须引入新的搜索机制和策略……….. Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的 兴趣。80年代以后: 模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。 最近比较热或刚热过去的:演化算法(Evol......余下全文>>

五:数学建模里matlab求蚁群算法求解旅游路线最短的问题

你可以去查查怎么解决

六:如何把蚁群算法应用到实际配送路径中

首先知道问题的数学模型,其次知道算法的数学模型,可利用matlab设计程序进行仿真

七:为什么很多论文都要用遗传算法,蚁群算法

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络

思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

八:什么是蚁群算法,神经网络算法,遗传算法

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络

思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

扫一扫手机访问

发表评论