一:模拟退火算法和粒子群算法的优缺点有那些?具体点,谢啦
退火优点:计算过程简单,通用,鲁棒性强,适用于并行处理,可用于求解复杂的非线性优化问题。缺点:收敛速度慢,执行时间长,算法性能与初始值有关及参数敏感等缺点。
PSO:演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦
二:改进模拟退火算法与传统模拟退火算法相比优缺点是什么,如有缺点该如何改进
该算法是一种新的随机搜索方法,它是近年来提出的一种适合于解决大规模组合优化问题的通用而有效的近似算法。与以往的近似算法相比,模拟退火算法具有描述简单、使用灵活、运用广泛、运行效率高和较少受到初始条件约束等优点
三:遗传算法、数值算法、爬山算法、模拟退火 各自的优缺点
遗传算法:优点是能很好的处理约束,能很好的跳出局部最优,最终得到全局最优解,全局搜索能力强;缺点是收敛较慢,局部搜索能力较弱,运行时间长,且容易受参数的影响。
模拟退火:优点是局部搜索能力强,运行时间较短;缺点是全局搜索能力差,容易受参数的影恭。
爬山算法:显然爬山算法较简单,效率高,但是处理多约束大规模问题时力不从心,往往不能得到较好的解。
数值算法:这个数值算法的含义太广,你说的是哪一种数值算法?多数数组算法与爬山算法的有优缺点类似。
PS:望采纳!
四:模拟退火和遗传算法都可以解决什么问题啊
模拟退火算法和遗传算法,包括禁忌搜索算法,蚁群算法等都可以用来求解优化问题。这些算法的一个特点是虽然对于一些复杂问题,比如说DP难题,可能不好找到最优解(理论上找到最优解是可以的),但是可以以较高的效率找到满意解。
五:模拟退火算法 一定能收敛到全局最优解吗
不一定,这是一个随机算法,这就意味着它有可能会止步于部分最优解。所以一般比赛的时候都要交上好几遍来通过代码
六:为什么说模拟退火算法优于局部搜索算法
该算法是一种新的随机搜索方法,它是近年来提出的一种适合于解决大规模组合优化问题的通用而有效的近似算法。与以往的近似算法相比,模拟退火算法具有描述简单、使用灵活、运用广泛、运行效率高和较少受到初始条件约束等优点
七:模拟退火算法、遗传算法、蚁群算法、粒子群算法就算法复杂度和难度来讲哪个要容易一点??急!!!!
粒子群比较简单,也好入门。
就两个公式。
我这有个现成的,你运行,看看,分析分析就会了。