短波红外相机

一:请问谁有关于短波红外相机的资料啊,最好能列举具体品牌相机的功能,拍摄图像,发展远景 20分

这个。。。我还真不清楚专门的相机,现在我周围的人玩红外几乎都是用普通的机子改造的

二:红外成像和热成像的具体区别

你指的红外是主动红外,热成像是被动红外。区别在于主动红外是通过发射红外源把外界的亮度提高上万倍来实现在夜间看到物体的目的。而被动红外是通过物体本身的红外特征来发现它,一般超过自然温度的物体都有红外特征。

热成像是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生成热图像和温度值,并可以对温度值进行计算的一种检测设备。

三:信乐团是什么

一个乐队。

姓 名:信    乐队位置:主唱

姓 名:志群   乐队位置:吉他手

姓 名:晓华   乐队位置:贝斯手

姓 名:Tomi   乐队位置:键盘手

姓 名:MICHEAL  乐队位置:团长兼鼓手

信乐团单曲作品:

《从今以后》

《带刺的蝴蝶》

《世界末日》

《死了都要爱》  《千年之恋》

《一了百了》

四:请问长波非制冷的红外相机产品 谢谢

北京博视智动技术有限公司专业代理的Cantronic公司专注于红外高科技产品的研发和生产,是红外热成像技术的全球领先者,其产品广泛应用于国防、国土安全、边境和防御带监控、公共安全控制、重要基础设施保护和医疗等领域。

其长波非制冷的红外相机产品有:

CC-LW1 Vox长波非制冷红外相机320x240@50fps NETD<40mK 标准视频输出 pdf

TCC-LW2 Vox长波非制冷红外相机640x480@25fps NETD<50mK 标准视频输出 pdf

TCC-LW2 热像仪是一个结构紧凑的长波红外夜视产品,用于在完全黑暗和极端条件下进行监视。TCC-LW2热像仪采用尖端的640×480非制冷氧化钒探测器作为成像器件,能提供高品质的红外图像,能够检测到8到14微米的长波红外光。

五:红外线的原理

红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界。 太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间。

真正的红外线夜视仪是光电倍增管成像,与望远镜原理完全不同,白天不能使用,价格昂贵且需电源才能工作。

【红外线的物理性质】

在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。

近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。

【红外线的物理特性】

1.有热效应

2.穿透云雾的能力强

【红外线的生理作用和治疗作用】

人体对红外线的反射和吸收

红外线照射体表后,一部分被反射,另一部分被皮肤吸收。皮肤对红外线的反射程度与色素沉着的状况有关,用波长0.9微米的红外线照射时,无色素沉着的皮肤反射其能量约60%;而有色素沉着的皮肤反射其能量约40%。长波红外线(波长1.5微米以上)照射时,绝大部分被反射和为浅层皮肤组织吸收,穿透皮肤的深度仅达0.05~2毫米,因而只能作用到皮肤的表层组织;短波红外线(波长1.5微米以内)以及红色光的近红外线部分透入组织最深,穿透深度可达10毫米,能直接作用到皮肤的血管、淋巴管、神经末梢及其他皮下组织。

红外线红斑

足够强度的红外线照射皮肤时,可出现红外线红斑,停止照射不久红斑即消失。大剂量红外线多次照射皮肤时,可产生褐色大理石样的色素沉着,这与热作用加强了血管壁基底细胞层中黑色素细胞的色素形成有关。

红外线的治疗作用

红外线治疗作用的基础是温热效应。在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高。红外线治疗慢性炎症时,改善血液循环,增加细胞的吞噬功能,消除肿胀,促进炎症消散。红外线可降低神经系统的兴奋性,有镇痛、解除横纹肌和平滑肌痉挛以及促进神经功能恢复等作用。在治疗慢性感染性伤口和慢性溃疡时,改善组织营养,消除肉芽水肿,促进肉芽生长,加快伤口愈合。红外线照射有减少烧伤创面渗出的作用。红外线还经常用于治疗扭挫伤,促进组织肿张和血肿消散以及减轻术后粘连,促进瘢痕软化,减轻瘢痕挛缩等。

红外线对眼的作用

由于眼球含有较多的液体,对红外线吸收较强,因而一定强度的红外线直接照射眼睛时可引起白内障。白内障的产生与短波红外线的作用有关;波长大于1.5微米的红外线不引起白内障。

光浴对机体的作用

光浴的作用因素是红外线、可见光线和热空气。光浴时,可使较大面积,甚至全身出汗,从而减轻肾脏的负担,并可改善肾脏的血液循环,有利于肾功能的恢复。光浴作用可使血红蛋白、红细胞、中性粒细胞、淋巴细胞、嗜酸粒细胞增加,轻度核左移;加强免疫力。局部浴可改善神经和肌肉的血液供应和营养,因而可促进其功能恢复正常。全身光浴可明显......余下全文>>

六:红外线的作用?

红外线是太阳光线中众多不可见光线中的一种,由英国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界。 太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间。

真正的红外线夜视仪是光电倍增管成像,与望远镜原理完全不同,白天不能使用,价格昂贵且需电源才能工作。

[编辑本段]【红外线的物理性质】

在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273.15℃)的物质都可以产生红外线。现代物理学称之为热射线。医用红外线可分为两类:近红外线与远红外线。

近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。

[编辑本段]【红外线的物理特性】

1.有热效应

一切物体都在不停的辐射红外线。物体的温度越高,辐射的红外线就越多。

热效应的应用:

人体生病的时候,虽然外面看起来没有什么变化,但是由于局部皮肤的温度不正常,如果在照相机里装上对红外感光的胶片,给皮肤拍照再与正常人的照片对比,可以对疾病作出诊断。这种相机拍出来的照片叫热谱图。

红外线照射到物体上最明显的效果就是产生热。冬天烤火,就是因为有大量的红外线从炉子里射到人身上,才能让我们感觉到热乎乎的。

根据红外线的热效应,人们还研究出了红外线夜视仪。红外线夜视仪在漆黑的夜晚也可以发现人的存在。夜间人的体温比周围草木或建筑的温度高,人体辐射出来的红外线就比他们强。可以帮助人们在夜间进行观察、搜索、瞄准和驾驶车辆等。

物体在辐射红外线的同时,也在吸收红外线。各种物体吸收了红外线以后温度就会升高。我们就可以利用红外线的热效应来加热物品。家庭用的红外线烤箱,浴室用的暖灯,也就是浴霸等等。

物体加热

可以利用红外线烘干汽车表面的喷漆,烘干稻谷等作物。

烘干油漆,稻谷。

在医学上,还可以利用红外线的热效应进行理疗。在红外线照射下,组织温度升高,血流加快,物质代谢增强,组织细胞活力及再生能力提高。伤口就容易痊愈。

医学理疗

红外线的特性还有一条就是穿透能力很强。

2.穿透云雾的能力强(波长较长,易于衍射)

由于一切物体,都在不停地辐射红外线,并且不同物体辐射红外线的强度不同,利用灵敏的红外线探测器接收物体发出的红外线,然后用电子仪器对接到的信号进行处理,就可以察知被测物体的形状和特征,这种技术叫做红外线遥感技术,可以在卫星上勘测地热、寻找水源、监测森林火情、估计农作物的长势和收成。还有我们每天都要关注的天气预报,也是红外线遥感技术。

红外线遥感

在战争中,当敌机飞进我们的阵地时,红外线望远镜早就接收到了由它的发动部分—发动机辐射来的大量红外线,红外线在望远镜的光电变换器中产生了电流,再由电流产生可见光。于是黑暗中的飞机在镜中就现原形了。

我们每天都用到的电视遥控器也是利用了红外线。遥控器的前段有一个红外发光二极管,按下不同的键时,它可以发射不同的红外线,来实现电视机的遥控。

......余下全文>>

七:LED的红外波长范围是多少? 5分

红外线(Infrared)又俗称红外光,是波长介乎微波与可见光之间的电磁波,其波长在760奈米(nm)至1毫米(mm)之间,是波长比红光长的非可见光,对应频率约是在430 THz到300 GHz的范围内[1]。室温下物体所发出的热辐射多都在此波段。

红外线是在1800年由天文学家威廉·赫歇尔发现,威廉借由温度计温度的上升,发现有一种看不到的辐射,其频率低于红色光。太阳的能量中约有超过一半的能量是以红外线的方式进入地球,地球吸收及发射红外线辐射的平衡对其气候有关键性的影响。

当分子改变其旋转或振动的运动方式时,就会吸收或发射红外线。由红外线的能量可以找出分子的振动模态及其偶极矩的变化,因此在研究分子对称性及其能态时,红外线是理想的频率范围。红外线光谱学研究在红外线范围内的光子吸收及发射[2]。

红外线可用在军事、工业、科学及医学的应用中。红外线夜视装置利用即时的近红外线影像,可以在不被查觉的情形下在夜间观察人或是动物。紶外线天文学利用有感测器的望远镜穿透太空的星尘(例如分子云),检测像是行星等星体,以及检测早期宇宙留下的红移星体[3]。红外线热显像相机可以检测隔绝系统的热损失,观查皮肤中血液流动的变化,以及电子设备的过热。红外线穿透云雾的能力比可见光强,像红外线导引常用在导弹的导航、热成像仪及夜视镜可以用在不同的应用上、红外天文学及远红外线天文学可在天文学中应用红外线的技术。

不同领域的红外线

物体通常会辐射出跨越不同波长的红外线,但是侦测器的设计通常只能接收感到兴趣的特定频谱宽度以内的辐射。结果是,红外线通常会被区分成不同波长的较小区段。

一般使用者的分类

一般使用者的分类是[5]:

近红外线(NIR, IR-A DIN):波长在0.75-1.4微米,以水的吸收来定义,由于在二氧化硅玻璃中的低衰减率,通常使用在光纤通信中。在这个区域的波长对影像的增强非常敏锐。例如,包括夜视设备,像是夜视镜。

短波长红外线(SWIR, IR-B DIN):1.4-3微米,水的吸收在1,450奈米显著的增加。1,530至1,560奈米是主导远距离通信的主要光谱区域。

中波长红外线(MWIR, IR-C DIN)也称为中红外线:波长在3-8微米。被动式的红外线追热导向导弹技术在设计上就是使用3-5微米波段的大气窗口来工作,对飞机红外线标识的归航,通常是针对飞机引擎排放的羽流。

长波长红外线(LWIR, IR-C DIN):8-15微米。这是"热成像"的区域,在这个波段的感测器不需要其他的光或外部热源,例如太阳、月球或红外灯,就可以获得完整的热排放量的被动影像。前视性红外线(FLIR)系统使用这个区域的频谱。,有时也会被归类为"远红外线"

远红外线(FIR):50-1,000微米(参见远红外线激光)。

NIR和SWIR有时被称为"反射红外线",而MWIR和LWIR有时被称为"热红外线",这是基于黑体辐射曲线的特性,典型的'热'物体,像是排气管,同样的物体通常在MW的波段会比在LW波段下来得更为明亮。

国际照明委员会分类系统

国际照明委员会建议将红外线区分为以下三个类别[6]:

红外线-A (IR-A):700奈米-1,400奈米(0.7微米-1.4微米)

红外线-B (IR-B):1,400奈米-3,000奈米(1.4微米-3微米)

红外线-C (IR-C):3,000奈米-1毫米(3微米-1,000微米)

ISO 20473分类

ISO 20473的分类......余下全文>>

八:红外光谱区的范围是多少 5分

红外光:大于760NM,可见光波长:400-760NM,紫外光波长:400NM以下.

红外线的波长范围:

把能通过大气的三个波段划分为:

近红外波段 1~3微米

中红外波段 3~5微米

远红外波段 8~14微米

根据红外光谱划分为:

近红外波段 1~3微米

中红外波段 3~40微米

远红外波段 40~1000微米

医学领域中常常如此划分:

近红外区 0.76~3微米

中红外区 3~30微米

远红外区 30~1000微米

医用红外线可分为两类:近红外线与远红外线。近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。(但在实际应用中通常把2.5微波以上的红外线通称为远红外线。)

扫一扫手机访问

发表评论