博弈论应用

一:博弈论的应用有哪些方面?

博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域

1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已

站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。

纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。

1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Bo常el)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。

1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一......余下全文>>

二:博弈论在经济生活中的运用

应用相当多。

1、商战中的应用。如同类型产品如何定价,AB公司都会考虑到降价促销对公司的影响,以及对对方策略的影响,如果双方都选择不断降价,最终将会导致整个市场利润崩盘,而全都亏损,所以,如果公司决策者头脑够好,一定会使用博弈论选择一个最优策略保证自己的利益。

2、生活中的应用

如简单的饭店选择,同在一条小吃街上,一个饭店特别火,而另一个饭店人特别冷清。如果你稍微有些博弈论的理念或生活常识就会知道,一定要去火的那家饭店。这与从众心理有一丝丝关系,但更重要的是,同在大街上,如果俩家饭店都差不多,那人数应该大体一致,但既然一家特火爆,一家特冷清,那小心了,那就的饭一定相当难吃,不要抱着他是新开的饭店的想法。

这就是消费者在吃饭中重复博弈导致的最终都选择火爆饭店的结果。

三:请列举几个用“博弈论”在实际生活中分析问题的例子。

日常生活中的一切,均可从博弈得到解释,大到贸易战,小到今天早上你突然生病。可能你会认为,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏?

实际上,并非只有一个人,还有一个叫做“自然”(Nature)的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。

“自然”是研究单人博弈的重要假定。再比如一个农夫种庄稼也是同自然进行博弈的一个过程。自然的策略可以是:天旱、多雨、风调雨顺。农夫对应的策略分别是:防旱、防涝、放心地休息。当然,“自然”究竟采用哪种策略并不确定,于是农夫只有根据经验判断或气象预报来确定自己的行动。如果估计今年的旱情较重,就可早做防旱准备;如果估计水情严重,就早做防涝准备;如果估计是风调雨顺,农夫就可以悠哉游哉了。

生活中更多的游戏不是单人博弈,而是双人或多人的博弈。比如,某一天你觉得应该是你太太的生日,但又不能肯定:如果是太太的生日的话,你可以送一束花,太太会特别高兴;你不送花,太太会埋怨你忘了她的生日;如果不是太太的生日的话,你可以送太太一束花,太太感到意外的惊喜;你不送花,结果生活同往常一样。

在这个博弈里,我们看到,“自然”可以有两种策略:确定今天是太太的生日或确定今天不是太太的生日,但不论“自然”采取何种策略,你的最好行动都是买花。

夫妻吵架也是一场博弈。夫妻双方都有两种策略,强硬或软弱。博弈的可能结果有四种组合:夫强硬妻强硬、夫强硬妻软弱、夫软弱妻强硬、夫软弱妻软弱。

根据生活的实际观察,夫软弱妻软弱是婚姻最稳定的一种,因为互相都不愿让对方受到伤害或感到难过,常常情愿自己让步。动物学的研究有相同的结论,性格温顺的雄鸟和雌鸟更能和睦相处,寿命也更长。

夫强硬妻强硬是婚姻最不稳定的一种,大多数结局是负气离婚。夫强硬妻软弱和妻强硬夫软弱是最常见的一种,许多夫妻吵架都是这样,最后终归是一方让步,不是丈夫撤退到院子里点根烟,就是妻子避让到卧室里号啕大哭。

在竞争激烈的商业界,博弈更为常见。比如两个空调厂家之间的价格战,双方都要判断对方是否降价来决定自己是否降价,显而易见,厂家之间的博弈目标就是尽可能获得最大的市场份额,赚取最多的收益。

四:《博弈论》的应用领域学《博弈论》有什么用处,用在哪

太有用了,博弈论研究主体之间相互行为,主要用于经济学、管理学,也有用于信息科学、人工智能、数值计算等很多领域。

五:博弈论在具体的游戏设计中的应用方面有哪些?

最常见的就是对抗性质的游戏了。不管是PVC还是PVP,你给玩家众多选择,这里面就体现了博弈论。包括棋类,球类,战略类,尤其是赌博类游戏。

六:《博弈论》的应用领域

太礌用了,博弈论研究主体之间相互行为,主要用于经济学、管理学,也有用于信息科学、人工智能、数值计算等很多领域。

七:博弈论的作用,以及它在经济学中的应用

博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支, 博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略.博弈论还是属于运筹学的范畴。

经济学中的应用就是运用矩阵的方式来分析问题,详细清楚,最经典的就是囚徒困境,帕内托效率,帕内托定律,帕内托改进。纳什均衡,边际效用和成本,边际递增和递减规律。

八:演化博弈论的应用优势

经济学领域 新古典经济学以原子论和机械力学为理论基础,它假定参与人是完全理性和一致偏好的。参与人在既定的条件下可以得到一个最优方案,比如生产商在技术和资源一定的情况下可以找到一个获得最大收益的生产方案,消费者在既定的预算条件下可以获得一个最大效用的消费方案等等。博弈论在新古典经济学的基础上增加了行为主体之间的互动,使得理论更贴近现实,但总的来说,博弈论仍然没有跳出新古典经济学的框架。因此,在运用博弈论建立模型时,对各种关系做出的假设往往不切合实际,因此,根据此类模型做出的决策往往和现实相差较远,容易导致失误。演化博弈论摒弃了完全理性的假设,以达尔文生物进化论和拉马克的遗传基因理论为思想基础,从系统论出发,把群体行为的调整过程看作为一个动态系统,在其中每个个体的行为及其与群体之间的关系得到了单独的刻画。 博弈论假设行为主体具有完美的理性思维,即行为主体始终以自身最大利益为目标,具有各种环境中追求自身利益最大化的判断和决策能力,具有在存在交互作用的博弈环境中完美的判断和预测能力,不会犯错、不会冲动、没有不理智。另外,博弈论中的一个最重要的假设就是博弈双方行为人的“共同知识”假设,即所有参与人都是理性的,所有参与人知道所有参与人都是理性的,如此类推,以至无限。这是一个令人难以想象的无限推理过程,就行为人对现实世界的认识能力而言,是一条非常严格的假设。很显然,现实世界这种假设通常是得不到保证的。演化博弈论对于行为主体采取的是有限理性假设,因此,这些个体不具备博弈论中行为主体的“全知全能”,无法在经济活动中瞬间能够获得最优的结果。 博弈论注重均衡状态的研究,忽视达到均衡的过程。在博弈论中,行为主体能够立即对外部环境作出完美判断,达到均衡状态。博弈论忽视时间问题,强调行为主体瞬问的均衡,即使考虑时间问题,也把时间看作对称或可逆的。在演化博弈论中,时间占有非常重要的地位。行为主体在演化过程中不断修正和改进自己的行为,模仿成功的策略等等。 传统的博弈理论中的行为主体是完全理性的,通常,在完全理性的假设下,如果纳什均衡存在,那么博弈双方博弈一次就可直接达到纳什均衡。这个结果不依赖于市场的初始状态,所以不需要任何的动态调整过程。而演化博弈论认为,纳什均衡的达到应当是在多次博弈后才能达到的,需要有一个动态的调整过程,均衡的达到依赖于初始状态,是路径依赖的。另外,在有多个纳什均衡的情况下,若某个纳什均衡一定会被采用时,必须存在有某种能够导致每个博弈方都预期到的某个均衡出现的机制。然而,博弈论中的纳什均衡概念本身却不具有这种机制。因此,当博弈存在多个纳什均衡时,即使假设博弈方都是完全理性的,也无法预测博弈的结果是什么,如果博弈方只有有限理性,就更难预测博弈的结果了。当然,在博弈论中,当存在多个纳什均衡时,可以利用后向归纳法来实现对纳什均衡的精炼,但这种方法的前提条件是参与人需要满足一个比完全理性更强的理性假定——序贯理性。这在现实中是无法达到的。而在演化博弈理论中,均衡的精炼通过前向归纳法来实现,即参与人根据博弈的历史来选择其未来的行为策略,是一个动态的选择及调整过程。因此,尽管参与人都是有限理性的,但动态的选择机制将使得在有多个纳什均衡存在的情形下达到其中的某一个纳什均衡,实现纳什均衡的精练。最常见的选择机制动态方程有三类:第一类为正支付动态方程,在这类动态方程中,所有获得的支付大于群体的平均支付的纯策略都有正增长率,所有获得的支付小于群体的平均支付的纯策略都有负增长率;第二类为单调动态方程,在这类动态方程中,若一个纯策略或混合策略获得的支付大于另一个纯策略所获得的支付......余下全文>>

九:演化博弈论的应用领域

演化证券学:演化证券学是运用生物进化原理系统阐释股市运行机理的新兴交叉学科,是证券投资研究的一个具有生命力和丰富内涵的新领域。与现代金融学的“理性人”、“有效市场”相关假设不同,演化分析法重视对“生物本能”和“竞争与适应”的研究,强调人性和市场环境在股市演化中的重要地位,是揭示股市生存法则最有潜力的前沿科学。其开山之作《股市真面目》颠覆了股市运行机理的传统理论,可称为达尔文式的范式革命。演化经济学:演化经济学是现代经济学研究的一个具有广阔发展前景的崭新学科,与新古典经济学的静态均衡分析相比,演化经济学用动态、演化分析方法观察经济发展进程,探索经济变迁和技术变迁的内在规律,认为惯例、新奇创新和对创新的模仿在经济演化中起着关键性作用。演化经济学的发展历经坎坷,在20世纪五、六十年代,它已被绝大多数经济学家所遗忘,一直到了20世纪八十年代,它才开始被越来越多有远见的经济学家所注意。

扫一扫手机访问

发表评论