电机矢量控制原理

一:电机矢量控制的原理是什么

由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

简介

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,有利于分别设计两者的调节器,以实现对交流电机的高性能调速。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。这样就可以将一台三相异步电机等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。矢量控制算法已被广泛地应用在siemens,AB,GE,Fuji,SAJ等国际化大公司变频器上。

矢量控制方式

采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,目前新型矢量控制通用变频器中已经具备异步电动机参数自动检测、自动辨识、自适应功能,带有这种功能的通用变频器在驱动异步电动机进行正常运转之前可以自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机郸行有效的矢量控制。

举例

以异步电动机的矢量控制为例: 它首先通过电机的等效电路来得出一些磁链方程,包括定子磁链,气隙磁链,转子磁链,其中气隙磁链是连接定子和转子的.一般的感应电机转子电流不易测量,所以通过气息来中转,把它变成定子电流. 然后,有一些坐标变换,首先通过3/2变换,变成静止的d-q坐标,然后通过前面的磁链方程产生的单位矢量来得到旋转坐标下的类似于直流机的转矩电流分量和磁场电流分量,这样就实现了解耦控制,加快了系统的响应速度. 最后再经过2/3变换,产生三相交流电去控制电机,这样就获得了良好的性能.

矢量控制(VC)方式

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换, 等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。 综合以上:矢量控制无非就四个知识:等效电路、磁链方程、转矩方程、坐标变换(包括静止和旋转) 矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。...余下全文>>

二:什么是磁场定向控制(FOC),和矢量控制有什么区别?

磁场定向控制系统(FOC)又称为矢量控制系统,他是选择电机某一旋转磁场轴作为特定的同步旋转坐标轴。磁场定向轴的选择有三种:转子磁场定向、气隙磁场定向和定子磁场定向;气隙磁场定向和定子磁场定向在磁链关系中均存在耦合,使得矢量控制结构更加复杂;转子磁场定向是仿照直流电动机的控制方式,利用坐标变换的手段,把交流电动机的定子电流分解成磁场分量电流(相当于励磁电流)和转矩分量电流(相当于负载电流)并分别加以控制,即磁通电流分量和转矩电流分量二者完全解耦,从而获得类似于直流调速系统的动态性能。

FOC控制技术在工业领域应用的相对成熟,常见到的产品有伺服控制器、矢量变频器等;在民用领域普及相对滞后,比如近10年发展起来的变频空调、出口欧美的高端变频风扇等;在国内电动车应用领域FOC控制技术的应用尚处于起步阶段,传统的控制器生产厂家已经意识到市场发展的方向,但原有的技术班底尚无能力吃透FOC软件核心算法,所以在相对较低端的2轮车、3轮车(包括助力车、老年代步车等)等领域难以见到较为成功的产品推广,而在高端电动4轮车(电动轿车、电动观光车)市场,见到更多的是国外同行的优秀产品和国内厂家的粗制滥造的控制总成。

三:矢量控制的介绍

由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪60年代末由达姆斯塔特工业大学(TU Darmstadt)的K.Hasse提出。在70年代初由西门子工程师F.Blaschke在不伦瑞克工业大学(TU Braunschweig)表发的博士论文中提出三相电机磁场定向控制方法,通过异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

四:异步电动机的矢量控制?

有人会说你的解释对吗?1、“矢量控制”理论的核心是,有效控制产生电磁转矩的电流分量;2、由电机学知识知道,异步电机在稳定运行区,转子电路功率因数接近为1,也就是说转子电流就是矢量控制要控制的只与转矩有关的电流;3、而在稳定运行区,转子电流直接与转差率S有关,异步电机的硬特性就依靠转子转速的微小变化控制调整转子有功电流,控制电磁转矩跟随负载变化的;4、异步电机的硬特性、恒速原理就是异步电机自我矢量控制转矩的原理;

五:电动车控制器点标识的矢量控制是什么意思呢,请高人教

如果想系统的了解矢量控制,可以百度,如果通俗的说矢量控制,就是人们口口相传的“正弦波”控制器,最大特点是电机运行几乎没有噪音

六:交流异步电机的矢量控制能位置控制吗

可以啊,

1)矢量控制指的是以坐标变换为原理,将一个坐标系下空间矢量通过坐标变换原理变换到另一个坐标系下的控制,譬如,将静止坐标系下的电流矢量,电压矢量或磁链矢量变换到旋转坐标系下。

2)位置控制指的是给定一个期望位置,通过控制方案使得实际位置到达期望位置,位置控制属于外环控制,中间环是速度环控制,内环是电流环控制。

3)矢量控制是电流环控制的输出电压做矢量控制,将d,q轴旋转坐标系下的电压变换到两相静止坐标系下,然后将两相静止坐标系下的电压变换到三相静止坐标系,产生PWM波,输出电压控制电机。

七:通俗地解释转子磁链?矢量控制?

关于矢量控制,通俗理解是:

1. 先把电机想像成2块飞速旋转磁铁,定子磁铁和转子磁铁。进一步可以引申为定子磁场和转子磁场。

2. 电机的电磁转矩与定子磁场强度、转子磁场强度、2块磁铁之间的夹角的正弦成正比。关于这一点不难理解,两块磁铁对齐的时候(0度,sin0=0;),不存在电磁转矩;两块磁铁相差90度的时候(sin90=1;),电磁转矩达到顶峰; 3. 接下来控制的目标就是:

1)稳定其中的一个旋转磁场的强度(恒定磁场); 2) 控制磁铁之间角度为90度(磁场定向FOC);

3) 控制另一个磁场(受控磁场)的强度以达到控制电磁转矩大小(力矩控制)。 4. 关于坐标变换的物理意义(以同步电机为例):

1)在电机不失步的情况下,可以认为两个磁极之间相对静止,最多在夹角0~90度之间移动。 2)既然交流电产生的是一个旋转磁场,那么自然可以把它想像成一个直流电产生的恒磁场,只不过这个恒磁场处于旋转当中。

3)如果恒磁场对应的直流电流产生的磁场强度,与对应交流电产生的磁场强度相等,就可以认为两者等同。

4)坐标变换基于以上认知,首先认为观察者站在恒定定磁场上并随之运转,观察被控磁场的直流电线圈电流及两个磁场之间的夹角。

5)实际的坐标变化计算出的结果有两个,直轴电流Id和交轴电流Iq。通过Id和Iq可以算出两者的矢量和(总电流),及两个磁场之间的夹角。

6)直轴电流Id是不出力的,交轴电流Iq是产生电磁转矩关键因素。 5. 对于交流同步隐极电动机:

1) 其转子磁场是恒定的。

2) 转子的当前磁极位置用旋转编码器实时检测。

3) 定子磁极(旋转磁场)的位置从A相轴线为起点,由变频器所发的正弦波来决定。

4) 实际上先有定子磁场的旋转,然后才有转子磁场试图与之对齐而产生的跟随。

5) 计算出转子磁场与A相轴线之间的偏差角度。

6) 通过霍尔元件检测三相定子电流,以转子磁场与A相轴线之间的偏差角度作为算子(相当于观察者与转子磁场同步旋转),通过坐标变换分解出定子旋转磁场中与转子磁极对齐的分量(直轴电流Id),产生转矩的分量(交轴电流Iq)。

7) 定子电流所产生旋转磁场与观察者基本同步,最多在夹角0~90度之间移动。移动量是多少,会体现在直轴电流Id、交轴电流Iq的数值对比上。

8) 驱动器通过前面的速度环的输出产生电流环的给定,通过第6)条引入电流环的反馈Iq,通过PI控制产生Iq输出。

9) 设定Id=0。这一点不难理解,使两个磁极对齐的电流我们是不需要的。通过这一点,我们实现了磁场定向FOC(控制磁铁之间角度为90度)。

10) 计算出了Iq, Id=0。引入偏差角度算子通过坐标反变换变换产生了三相电流的输出。 11) 当Iq>0, 定子旋转磁场对转子磁场的超前90度,电磁转矩依靠两个磁场之间异性相吸的原理来产生,这时候电磁转矩起到加速的作用。

12) 当Iq<0, 定子旋转磁场对转子磁场的仍然超前90度,但是定子磁场的N、S极调换了一下,电磁转矩依靠两个磁场之间同性相排斥的原理来产生,这时候电磁转矩起到减速制动的作用。

13) 从本质上讲,我们是依靠控制定子旋转磁场对转子磁场的超前角度及该磁场的强度来实现矢量控制的。

...余下全文>>

八:V/F控制和矢量控制的区别?

“如果根据电流变化实时计算电机电磁转矩,来动态调节输出电压矢量,这就是属于矢量控制和直接转矩控制的方法了”1、当电机负载转矩变化时,变频器知道负载转矩大小的依据、途径是什么?、2、负载转矩大小变化,必然引起转子转速n2的变化,△n2引起的转子电流的变化,转子电流I2的变化,引起定子电流I1以及电流、电压的相差的变化,这些都是检测负载转矩大小变化的依据、途径;3、从反馈检测参数看,检测n2、检测I1等都是检测负载转矩的大、小变化的趋势,从控制方式看,没有本质的区别!4、包括你说的“外部速度传感器都取消了”,并不等于它不要检测,它是不要外部速度传感器,可它不能没有内部电流检测传感器;

九:矢量控制与转矩控制的区别

矢量控制,通过对交流电机的空间矢量图,采用磁场定向的方法将定子电流分解为与磁场方向一致的励磁分量和与磁场方向正交的转矩分量,并分别对磁通和力矩进行控制,而使异步电机可以像他励直流电机一样控制。

其实矢量控制也是为了间接地控制转矩,使电动机尤其是在低频时可以得到足够大的转矩。其控制转矩的方式是通过准确的电动机参数建立的模型来计算实时的转矩数值与给定转矩作比较,从而达到控制输出转矩的目的。

还有一种转矩控制方式叫做直接转矩控制(DTC),他是用空间矢量的分析方法,采用定子磁场定向,直接在定子坐标系下计算与控制电动机的转矩。

对应的还有一种速度控制。总之,速度控制的被控量是电动机的速度,而转矩控制的被控量是转矩。

扫一扫手机访问

发表评论