一:测量不确定度与测量误差的区别与联系?
测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。 首先要明确的是测量不确定度与误差二者之间概念上的差异。
测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。
误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类:系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。
通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别:
一.评定目的的区别:
测量不确定度为的是表明被测量值的分散性;
测量误差为的是表明测量结果偏离真值的程度。
二.评定结果的区别:
测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定;
测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。
三.影响因素的区别:
测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关;
测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变;
因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。
四.按性质区分上的区别:
测量不确定度不确定度分量评定时一般不必区分其性质,若需要区分时应表述为:“由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”;
测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。
五.对测量结果修正的区别:
“不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度;
而系统误差的估计值如果已知则可以对测量结果进行修正,得到已修正的测量结果。
一个量值经修正后,可能会更靠近真值,但其不确定度不但不减小,有时反而会更大。这主要还是因为我们不能确切的知道真值为多少,仅能对测量结果靠近或离开真值的程度进行估计而已。
虽然测量不确定度与误差有着以上种种不同,但它们仍存在着密切的联系。不确定度的概念是误差理论的应用和拓展,而误差分析依然是测量不确定度评估的理论基础,在估计B类分量时,更是离不开......余下全文>>
二:不确定度和误差的概念有何不同
在测量过程中,各项误差合成后得到的总极限误差称为测量的不确定度,他是表示由于测量过程中各项误差影响而使测量结果不能肯定的误差范围。
测量误差=测量值-真值,测量值>真值,为正差;测量值<真值,为负差。
由于我们习惯了测量误差这个概念,现在提出测量不确定度,确实理解起来比较困难。测量不确定度目前在各种资料上给出的解释不尽相同,但本质都是相同的。我们可以这样简单的理解:测量误差为一个确定值(尽管被测量真值是一个未知量),而不确定度是被测量真值所处一个范围的评定或由于测量误差致使测量结果不能肯定的程度。(这是我个人理解所得,上课的时候也是这样教学生的)
由ISO、IEC、BIPM、IFCC、IUPAC、IUPAP、OIML七个国际组织共同组成国际测量不确定度工作组,在1NC-1(1980)建议书的基础上,起草制定了《测量不确定郸表示指南》(GUM)。1993年,GUM以7个国际组织的名义正式由ISO颁布实施,并在1995年作了修订。为了贯彻GUM在我国的实施,由全国法制计量委员会委托中国计量科学研究院起草制定了国家计量技术规范《测量不确定度评定与表示》(JJF1059-1999)。该规范原则上等同GUM的基本内容,作为我国统一准则对测量结果及其质量进行评定、表示和比较。
国家计量技术规范《测量不确定度评定与表示》(JJF1059-1999)中,对测量不确定度定义为:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。此参数可以是标准差或其倍数,或说明了置信水准的区间的半宽度,其值恒为正值。
三:求助准确度、最大允许误差、不确定度三者的区别
准确度等级应该是你的表本身达到标准应该是多少最大允许误差是不同等级的表允许误差一般不同,在这范围内的算合格,超过的就是不合格。有一些仪器可以作降级处理。不确定度是指在测量检定过程中由于各种不可避免的原因带入的误差,例如标准器,人员读数、环境等
四:测量不确定度与误差是怎样的关系
测量不确定度与误差是怎样的关系呢?
众所周知测量不确定度和误差都是用来评定测量质量优劣的,但两者又有本质的区别。
“
测量不确定度的定义:“表征合理地被测量之值的分散性,与测量结果相联系的参数。”
我们认为可以理解为测量不确定度是用于确定以测量结果为中心,被测量之值存在的合理区间。其中言及的测量结果的定义是:“由测量所得到的赋予被测量的值。”在给出测量结果时,应说明它是示值、未修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。
对于具体的某个测量任务,对于特定的被测量,给出的测量结果是唯一的,被测量之值真是多少一般是不可知的,但它在以测量结果为中心的一定区间内存在,该区间的大小由测量不确定度确定,为了使该测量结果具有给定的置信概率,则该区间由扩展不确定度确定,此时不存在测量结果区间。
“
误差的定义是:“测量结果减去被测量的真值。”
在误差理论中,问题的讨论是以被测量的真值为中心,由误差的定义可知,误差表示的是一个量值,是测量结果与被测量的真值的距离,不是一个区间。
但是对于特定的测量仪器,给出了准确度就确定了该测量仪器的允许的误差极限值,即最大允许误差。当用该测量仪器去测量特定的被测量,测量结果会是多少一般是不可知的,但它一定会在以被测量的真值为心的一定区间内存在,该区间的大小由最大允许误差确定,在此情况下才存在测量结果区间。
可见虽然扩展不确定度和最大允许误差,都是以某个值为中心的一定区间的半宽。但扩展不确定度是用于评定测量的优劣,是以测量结果为中心,合理予被测量之值分布的大部分可望含于此区间的半宽;而最大允许误差是用于评定测量仪器的优劣,是以被测量的真值为中心,用该仪器去测量特定被测量时,测量结果均含于此区间的半宽。
这便是测量不确定度的另一属性:与真值的关系的属性。
而且,的确是测量不确定度解决了真知不可知的问题。
当以最佳估计值作为被测量的测量结果给出时,被测量的真值是多少,一般情况下还真不知道,但它会以一定的包含概率存于测量结果附近的区间。
这正是测量不确定度的巧妙之处,既没有违背真知不可知的客观事实,但又与真值存着一定的关系。否则,测量不确定度会失去存在的意义。
而且,人们也进一步清醒地认识到:最大允许许误差说的是计量器具的优劣;而测量不确定度主要是指测量质量高低,测量结果的可信程度。