一:求极限的所有方法,要求详细点
基本方法有:
(1)、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
(2)、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
(3)、运用两个特别极限;
(4)、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小
比无穷小,分子分母还必须是连续可导函数。
它不是所向无敌,不可以代替其他所有方法,一楼言过其实。
(5)、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
(6)、等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是
值得推广的教学法;二是经常会出错,要特别小心。
(7)、夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。
(8)、特殊情况下,化为积分计算。
(9)、其他极为特殊而不能普遍使用的方法。
二:总结求极限的方法,谢谢
1、计算极限的方法,五花八门,但是整体上,或者说,
平时的考试中,一般都是规规矩矩的。即使是考研
究生,考试题目的类型也是常见的类型。
2、下面本人所作的总结,包括例题,如果精通这些方法,
应付大学考试、研究生入学考试,绰绰有余。
三:请写出2种以上求极限的方法
如果x值代入式子趋于一般常数
那么直接代入即可
如果分子分母同时趋于无穷大或0
那么使用洛必达法则同时求导
或使用等价无穷小代换
x趋于0时
sinx,ln(1十x),e^x-1等等
都可以代换为x
四:求函数极限的方法有几种?具体怎么求?
1.直接求法;
2.公式法:
3.罗必答法则:
4.两边夹法则。
五:求极限的方法谁给我总结一下。
1、关于极限的常用计算方法与示例,请楼主参看下面的图片;
2、由于篇幅巨大,无法全数上传,下面图片上的方法,应付到
研究生考试,已经绰绰有余。
3、每张图片均可点击放大,放大后的图片更加清晰。
4、若有疑问,欢迎追问,有问必答,有疑必释。
.
.
.
.
.
.
.
.
.
.
【敬请】
敬请有推选认证《专业解答》权限的达人,千万不要将本人对该题的解答认证为《专业解答》。.一旦被认证为《专业解答》,所有网友都无法进行评论、公议、纠错。本人非常需要倾听对我解答的各种反馈,即使是言辞激烈的、批评的、反驳的评论,也是需要倾听的。
.
请体谅,敬请切勿认证。谢谢体谅!谢谢理解!谢谢!谢谢!
.
六:当x趋于无穷时,求极限的一般方法
同除以x:原式=1/(1+1/x)当x趋于无穷大时,1/x趋近于0所以原式趋近于1