全基因组测序

一:全基因组和全外显子组测序的区别

基于第二代高通量测序技术,对于有参考序列的物种,针对不同的真菌菌株,可通过全基因组重测序的方法获得全基因组范围内完整的变异信息,讨论群体的遗传结构、影响群体遗传平衡的因素以及物种形成的机制,定位重要性状位点,为后续分子育种打下坚实基础。同时,通过全基因组大样本重测序对真菌重要菌株进行全基因组的基因型鉴定,并与关注的表型数据进行全基因组关联分析(GWAS),找出与关注表型相关的SNP位点,定位性状相关基因。随着测序成本降低和拥有参考基因组序列的物种增多,基因组重测序也成为育种研究中迅速有效的方法之一,在全基因组水平扫描并检测出与重要性状相关的变异位点,具有重大的科研价值和产业价值。

近日,Nature Genetics发表的一篇文章就充分利用了微生物基因组测序与以全基因组重测序为基础的全基因组关联分析结合的方法,揭示了裂殖酵母遗传与表型多样性之间的联系。研究者选取裂殖酵母Schizosaccharomyces pombe作为研究对象,在全球20个国家范围内收集了时间跨度为100年的161个野生株系的S.Pombe,进行了全基因组测序,推测裂殖酵母在公元前340年开始广泛大量出现,祖先种到达美洲的时间为公园1623年。后续研究者又选取223个菌种进行全基因组关联分析,发现至少89个性状表现出一个关联。每个性状最显著的检测到的变异可以解释平均22%的表型差异,且indel的影响比SNP更大。

二:目前已完成全基因组测序的物种有哪些

目前已完成全基因组测序的物种主要可以分类三大类,模式物种、农作物和经济作物、有药用价值的物种。

在模式物种这块,众所周知的,拟南芥、果蝇、斑马鱼、小鼠、大鼠等等;

而农作物和经济作物大概有以下:水稻、玉米、大豆、甘蓝、白菜、高粱、黄瓜、西瓜、马铃薯、番茄、拟南芥、杨树、麻风树、苹果、桃、葡萄、花生;

在药用这块,目前主要有一些真菌类,例如灵芝、茯苓等,以及一些药用植物,例如丹参、长春花等。

三:全基因组测序的研究结果

①NCI-H209细胞系基因组中,共检测到22,910个碱基替换、65个插入缺失(Indels)、58个结构变异;在基因组的编码区,除了发现RB1 和TP53基因发生点突变和MLL2基因由于发生了G>T的颠换,从而产生了pre-stop codon外,有94个点突变直接改变了氨基酸序列,有36个属同义突变。②特定的碱基及其周围序列易被烟气中的多环芳烃和丙烯醛诱变。在NCI-H209细胞系基因组中,G>T/C>A是最为普遍的颠换现象,发生频率为34%;其次是G>A/C>T(21%)和A>G/T>C(19%);CpG岛外的CpG二核苷酸多发生G>T颠换,而CpG岛内的CpG二核苷酸多发生G>C颠换,说明烟气中的致癌物偏好引起甲基化的CpG二核苷酸发生颠换。③检测到转录偶联修复(Transcription-coupled repair)和表达相关的修复(Expression-linked repair)在起作用。转录偶联修复作用机制:鸟嘌呤和腺嘌呤上大的加合物是吸烟过程中所释放的致癌化学物质引起DNA损伤的主要形式,这些大的加合物阻止了转录链上RNA聚合酶的转录过程,而转录受阻的RNA聚合酶招募核苷酸剪切修复相关因子对受损的核苷酸进行修复以避免突变发生。在TP53基因突变的肺癌细胞中,G>T颠换常出现在非转录链,表明在转录链上相同的损伤已被识别和修复。在本研究中,转录链上G和A碱基替换频率比非转录链上少,由此看来嘌呤是烟气致癌物质主要诱变靶标。另外,在NCI-H209细胞系中,转录链和非转录链上发生不同类型的突变(G>T、A>G、A>T)两条链基因表达水平也有差异,这就意味着转录偶联修复机制识别、修复不同加合物损伤的能力不同。表达相关的修复(Expression-linked repair)作用机制:这是一种新的、更为普遍的修复机制,即,高表达的基因中,转录链及非转录链的突变频率都较低。在NCI-H209细胞系中,转录链和非转录链上发生G>A的突变,两条链上基因表达水平都很高,这就说明表达相关的修复作用比转录偶联修复作用更为重要。④在SCLC细胞系中,CHD7基因发生了重排。在NCI-H209细胞系中,CHD7基因3~8外显子发生连续重复,而另外2个LU-135、NCI-H2171细胞系则携带PVT1-CHD7融合基因,说明在肺癌中CHD7基因发生了周期性重排。以上结果表明,第二代测序技术已成为研究与癌症相关的基因突变过程、细胞损伤修复路径、基因调控网络的强有力工具。

四:个人全基因组重测序需花费多少钱?

人类基因组大小3G, 重测序一般需要测定至少20x以上的数据(数据乘数高的话对于信息分析是有海的),也就是说一般需要测定60G的数据,如果1G按照5000元算的话,需要30万元。

不过要看你的目的,现在illumina推出的my-seq测1个人的好像只需要几万。

五:目前已完成全基因组测序的物种有哪些

这是一篇文献上的,近两年还有更多……

Marie E Bolger, Bernd Weis shaar,Uwe Scholz, et al. Plant genome sequencing — applications for crop improvement[J] Biotechnology, 2014, 26:31 –37

六:全基因组重测序的技术路线

提取基因组DNA,利用Covaris进行随机打断,电泳回收所需长度的DNA片段(0.2~5Kb),加上接头, 进行cluster制备 (Solexa)或E-PCR (SOLiD),最后利用Paired-End(Solexa)或者Mate-Pair(SOLiD)的方法对插入片段进行重测序。图1-1,以SOLiD为例,说明整个实验方案。双末端(Paired-End)测序原理测序深度(Sequencing Depth):测序得到的碱基总量(bp)与基因组大小(Genome)的比值,它是评价测序量的指标之一。测序深度与基因组覆盖度之间是一个正相关的关系,测序带来的错误率或假阳性结果会随着测序深度的提升而下降。重测序的个体,如果采用的是Paired-End或Mate-Pair方案,当测序深度在10~15X以上时,基因组覆盖度和测序错误率控制均得以保证。测序深度对基因组覆盖度和测序错误率的影响(HOM:纯合体 HET:杂合体)

七:全基因测序和一般基因检测的区别

全基因测序是指一个生物体携带的所有基因信息测序,包括所有染色体上所有基因和非基因的碱基对测序,线粒体核糖体上的碱基对测序。

一般基因检测只是对某一个或几个基因或者某一个基因上特定片段或者特定位点的碱基对测序

八:全基因组测序的意义是什么?

个人基因组测序首先可以知道自己的基因组序列,中源协和对比到正常基因组上可以查看是否存在突变与异常,能够检测出基因是否异常,会否导致疾病等,预测疾病风险,价值很大的。

九:什么是全基因组测序?

全基因组测序,即对一种生物的基因组中的全部基因进行测序,测定其DNA的碱基序列。

扫一扫手机访问

发表评论