一:时间序列预测法的运用例子
某一城市从1984年到1994年中,每年参加体育锻炼的人口数,排列起来,共有11个数据构成一个时间序列。我们希望用某个数学模型,根据这11个历史数据,来预测1995年或以后若干年中每年的体育锻炼人数是多少,以便于该城市领导人制订一个有关体育健身的发展战略或整个工作计划。不同的时间序列有不同的特征,例如一个人在一年中每天消耗的粮食基本上是相同的,把这365个数字排列起来。发现它所构成的时间序列总保持在一定水平,上下相差不太大,我们称它是平稳时间序列。它的取值和具体是哪个时期无关,只和时期的长短有关。一般来说.只有属于平稳过程的时间序列.才是可以被预测的。 表11980~1999年扬州市农业总产值 单位:万元年份 农业总产值 年份 农业总产值 年份 农业总产值1980 220.553 1987 345.560 1994 483.9601981 236.285 1988 357.909 1995 549.8071982 267.120 1989 357.788 1996 600.9861983 278.787 1990 357.671 1997 620.2811984 312.089 1991 305.855 1998 667.5421985 331.172 1992 362.848 1999 711.7411986 338.848 1993 414.892表1是扬州市1980~1999年农业总产值的有关数据资料,资料摘自《扬州统计年鉴2000》,表中产值按1990年不变价格计算。根据表1时间序列的资料,画出时间序列折线图1。通过观察时间序列图,可以看出此时间序列具有明显的趋势变动。在1980~1999年20年间,扬州市农业总产值总体呈明显的上升趋势。农业总产值的变化分为两个时间段:1980~1990年时间序列呈曲线变化趋势,1991~1999年时间序列呈线性变化趋势。根据直观的判断,对时间序列采取分段处理的方法,即对1980~1990年的时间序列拟合二次曲线趋势模型,对1991~1999年的时间序列拟合线性趋势模型。图1农业总产值折线图 (1)二次曲线趋势模型:Yt=a+bt+ct^上述方程中的三个未知参数a、b、c根据最小二乘法求得。即对时间序列拟合一条趋势曲线,使之满足下列条件:各实际值Yt与趋势值〖AKY^〗t的离差平方和为最小,即∑(Yt-〖AKY^〗t)2=最小值,得到标准求解方程:∑Y=na+b∑t+c∑t^2∑tY=a∑t+b∑t^2+c∑t^3∑t^2Y=a∑t^2+b∑t^3+c∑t^4当取时间序列的中间时期数为原点时,有∑t=0,上式可简化为:∑Y=na+c∑t^2∑tY=b∑t^2∑t^2Y=a∑t^2+c∑t^4经过计算,得到对扬州市1980~1990年农业总产值时间序列拟合的二次曲线模型为:Y^t=316488.1+14584.3t-705.3t^2。(2)线性趋势模型:Y^t=a+bt上述方程中的两个未知参数a、b也是根据最小二乘法的原理求得。b=n∑tY-∑t∑Y/n∑t^2-(∑t)^2a=1/n(∑Y-b∑t)同样,为计算方便,取时间序列的中间时期数为原点,此时有∑t=0,上式可简化为:a=1/n∑Yb=∑tY/∑t^2经过计算,得到对扬州市1991~1999年农业总产值时间序列拟合的线性模型为:Y^t=524212+51090.5t
二:时间序列分析法的基本步骤
时间序列建模基本步骤是:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
三:有没有关于时间序列分析的例子,spss的
太多了,vip一下随便有几万
四:时间序列分析的具体算法
用随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。由于在多数问题中,随机数据是依时间先后排成序列的,故称为时间序列。它包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于随机序列的最优预测、控制和滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,用x(t)表示某地区第t个月的降雨量,{x(t),t=1,2,…}是一时间序列。对t=1,2,…,T,记录到逐月的降雨量数据x(1),x(2),…,x(T),称为长度为T的样本序列。依此即可使用时间序列分析方法,对未来各月的雨量x(T+l)(l=1,2,…)进行预报。时间序列分析在第二次世界大战前就已应用于经济预测。二次大战中和战后,在军事科学、空间科学和工业自动化等部门的应用更加广泛。就数学方法而言,平稳随机序列(见平稳过程)的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。频域分析 一个时间序列可看成各种周期扰动的叠加,频域分析就是确定各周期的振动能量的分配,这种分配称为“谱”,或“功率谱”。因此频域分析又称谱分析。谱分析中的一个重要是统计量,称为序列的周期图。当序列含有确定性的周期分量时,通过I(ω)的极大值点寻找这些分量的周期,是谱分析的重要内容之一。在按月记录的降雨量序列中,序列x(t)就可视为含有以12为周期的确定分量,所以序列x(t)可以表示为 ,它的周期图I(ω)处有明显的极大值。当平稳序列的谱分布函数F(λ)具有谱密度ƒ(λ)(即功率谱)时,可用(2π)-1I(λ)去估计ƒ(λ),它是ƒ(λ)的渐近无偏估计。如欲求ƒ(λ)的相合估计(见点估计),可用I(ω)的适当的平滑值去估计ƒ(λ),常用的方法为谱窗估计即取ƒ(λ)的估计弮(λ)为 ,式中wt(ω)称为谱窗函数。谱窗估计是实际应用中的重要方法之一。谱分布F(λ)本身的一种相合估计可由I(ω)的积分直接获得,即 。 研究以上各种估计量的统计性质,改进估计方法,是谱分析的重要内容。时域分析 它的目的在于确定序列在不同时刻取值的相互依赖关系,或者说,确定序列的相关结构。这种结构是用序列的自相关函0,1,…)来描述的,为序列的自协方差函数值,m=Ex(t)是平稳序列的均值。常常采用下列诸式给出m,γ(k),ρ(k)的估计: ,通(k)了解序列的相关结构,称为自相关分析。研究它们的强、弱相合性及其渐近分布等问题,是相关分析中的基本问题。模型分析 20世纪70年代以来,应用最广泛的时间序列模型是平稳自回归-滑动平均模型 (简称ARMA模型)。其形状为: 式中ε(t)是均值为零、方差为σ2的独立同分布的随机序列;和σ2为模型的参数,它们满足: 对一切|z|≤1的复数z成立。p和q是模型的阶数,为非负整数。特别当q=0时,上述模型称为自回归模型;当p=0时, 称为滑动平均模型。根据x(t)的样本值估计这些参数和阶数,就是对这种模型的统计分析的内容。对于满足ARMA模型的平稳序列,其线性最优预测与控制等问题都有较简捷的解决方法,尤其是自回归模型,使用更为方便。G.U.尤尔在1925~1930年间就提出了平稳自回归的概念。1943年,Η.Β.曼和Α.瓦尔德发表了关于这种模型的统计方法及其渐近性质的一些理论结果。一般ARMA模型的统计分析研究,则是20世纪6......余下全文>>
五:航母发展适不适合做时间序列分析这门课的例子
不适合,用时间序列分析的话基本要素不怎么满足:趋势、季节变动、循环波动和不规则波动
如果必须用时间序列分析方法选择范围还有很多,比如企业经营管理,数据好抓
六:时间序列分析的组成要素
一个时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。趋势:是时间序列在长时期内呈现出来的持续向上或持续向下的变动。季节变动:是时间序列在一年内重复出现的周期性波动。它是诸如气候条件、生产条件、节假日或人们的风俗习惯等各种因素影响的结果。循环波动:是时间序列呈现出得非固定长度的周期性变动。循环波动的周期可能会持续一段时间,但与趋势不同,它不是朝着单一方向的持续变动,而是涨落相同的交替波动。不规则波动:是时间序列中除去趋势、季节变动和周期波动之后的随机波动。不规则波动通常总是夹杂在时间序列中,致使时间序列产生一种波浪形或震荡式的变动。只含有随机波动的序列也称为平稳序列。
七:应用时间序列分析有哪几种方法?
方法很多的
第一章 时间序列分析概论 第二章 时间序列分析的基本概念 第三章 线性平稳时间序列分析 第四章 非平稳时间序列和季节序列模型 郸五章 时间序列的模型识别 第六章 时间序列模型参数的统计推断 第七章 平稳时间序列模型预测 第八章 非平稳和季节时间序列模型分析方法 第九章 非线性时间序列模型 第十章 多元时间序列分析 第十一章 (超)高频数据的建模与分析简介
八:有没有人可以共享《应用时间序列分析》PDF版的电子书啊,着急,感谢!
[应用时间序列分析].王燕.高清文字版.pdf
pan.baidu.com/s/1kT89lkV