一:时间序列预测法的运用例子
某一城市从1984年到1994年中,每年参加体育锻炼的人口数,排列起来,共有11个数据构成一个时间序列。我们希望用某个数学模型,根据这11个历史数据,来预测1995年或以后若干年中每年的体育锻炼人数是多少,以便于该城市领导人制订一个有关体育健身的发展战略或整个工作计划。不同的时间序列有不同的特征,例如一个人在一年中每天消耗的粮食基本上是相同的,把这365个数字排列起来。发现它所构成的时间序列总保持在一定水平,上下相差不太大,我们称它是平稳时间序列。它的取值和具体是哪个时期无关,只和时期的长短有关。一般来说.只有属于平稳过程的时间序列.才是可以被预测的。 表11980~1999年扬州市农业总产值 单位:万元年份 农业总产值 年份 农业总产值 年份 农业总产值1980 220.553 1987 345.560 1994 483.9601981 236.285 1988 357.909 1995 549.8071982 267.120 1989 357.788 1996 600.9861983 278.787 1990 357.671 1997 620.2811984 312.089 1991 305.855 1998 667.5421985 331.172 1992 362.848 1999 711.7411986 338.848 1993 414.892表1是扬州市1980~1999年农业总产值的有关数据资料,资料摘自《扬州统计年鉴2000》,表中产值按1990年不变价格计算。根据表1时间序列的资料,画出时间序列折线图1。通过观察时间序列图,可以看出此时间序列具有明显的趋势变动。在1980~1999年20年间,扬州市农业总产值总体呈明显的上升趋势。农业总产值的变化分为两个时间段:1980~1990年时间序列呈曲线变化趋势,1991~1999年时间序列呈线性变化趋势。根据直观的判断,对时间序列采取分段处理的方法,即对1980~1990年的时间序列拟合二次曲线趋势模型,对1991~1999年的时间序列拟合线性趋势模型。图1农业总产值折线图 (1)二次曲线趋势模型:Yt=a+bt+ct^上述方程中的三个未知参数a、b、c根据最小二乘法求得。即对时间序列拟合一条趋势曲线,使之满足下列条件:各实际值Yt与趋势值〖AKY^〗t的离差平方和为最小,即∑(Yt-〖AKY^〗t)2=最小值,得到标准求解方程:∑Y=na+b∑t+c∑t^2∑tY=a∑t+b∑t^2+c∑t^3∑t^2Y=a∑t^2+b∑t^3+c∑t^4当取时间序列的中间时期数为原点时,有∑t=0,上式可简化为:∑Y=na+c∑t^2∑tY=b∑t^2∑t^2Y=a∑t^2+c∑t^4经过计算,得到对扬州市1980~1990年农业总产值时间序列拟合的二次曲线模型为:Y^t=316488.1+14584.3t-705.3t^2。(2)线性趋势模型:Y^t=a+bt上述方程中的两个未知参数a、b也是根据最小二乘法的原理求得。b=n∑tY-∑t∑Y/n∑t^2-(∑t)^2a=1/n(∑Y-b∑t)同样,为计算方便,取时间序列的中间时期数为原点,此时有∑t=0,上式可简化为:a=1/n∑Yb=∑tY/∑t^2经过计算,得到对扬州市1991~1999年农业总产值时间序列拟合的线性模型为:Y^t=524212+51090.5t
二:时间序列预测法的分类
时间序列预测法可用于短期、中期和长期预测。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。简单序时平均数法也称算术平均法。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:“过去这样,今后也将这样”,把近期和远期数据等同化和平均化,因此只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。简单移动平均法就是相继移动计算若干时期的算术平均数作为下期预测值。加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。应根据新的情况,对预测结果作必要的修正。指数平滑法即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。此法实质是由内加权移动平均法演变而来的一种方法,优点是只要有上期实际数和上期预测值,就可计算下期的预测值,这样可以节省很多数据和处理数据的时间,减少数据的存储量,方法简便。是国外广泛使用的一种短期预测方法。季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。推算季节性指数可采用不同的方法,常用的方法有季(月)别平均法和移动平均法两种:a.季(月)别平均法。就是把各年度的数值分季(或月)加以平均,除以各年季(或月)的总平均数,得出各季(月)指数。这种方法可以用来分析生产、销售、原材料储备、预计资金周转需要量等方面的经济事物的季节性变动;b.移动平均法。即应用移动平均数计算比例求典型季节指数。市场寿命周期预测法 就是对产品市场寿命周期的分析研究。例如对处于成长期的产品预测其销售量,最常用的一种方法就是根据统计资料,按时间序列画成曲线图,再将曲线外延,即得到未来销售发展趋势。最简单的外延方法是直线外延法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。
三:常用的时间序列分析预测方法有哪几种
1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。 2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。 3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。 4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回归模型AR(p):如果时间序列 满足 其中 是独立同分布的随机变量序列,且满足: , 则称时间序列 服从p阶自回归模型。或者记为 。 平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。 (2) 移动平均模型MA(q):如果时间序列 满足 则称时间序列 服从q阶移动平均模型。或者记为 。 平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列 满足 则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。 特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。 二、时间序列的自相关分析 1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。 2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。 3、 样本自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。 4、 样本的偏自相关函数: 其中, 。 5、 时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: ①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; ②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。 6、 判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。 7、 ARMA模型的自相关分析 AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。 三、单位根检验和协整检验 1、单位根检验 ①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模型的残差不是白噪声,......余下全文>>
四:时间序列分析的具体算法
用随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。由于在多数问题中,随机数据是依时间先后排成序列的,故称为时间序列。它包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于随机序列的最优预测、控制和滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,用x(t)表示某地区第t个月的降雨量,{x(t),t=1,2,…}是一时间序列。对t=1,2,…,T,记录到逐月的降雨量数据x(1),x(2),…,x(T),称为长度为T的样本序列。依此即可使用时间序列分析方法,对未来各月的雨量x(T+l)(l=1,2,…)进行预报。时间序列分析在第二次世界大战前就已应用于经济预测。二次大战中和战后,在军事科学、空间科学和工业自动化等部门的应用更加广泛。就数学方法而言,平稳随机序列(见平稳过程)的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。频域分析 一个时间序列可看成各种周期扰动的叠加,频域分析就是确定各周期的振动能量的分配,这种分配称为“谱”,或“功率谱”。因此频域分析又称谱分析。谱分析中的一个重要是统计量,称为序列的周期图。当序列含有确定性的周期分量时,通过I(ω)的极大值点寻找这些分量的周期,是谱分析的重要内容之一。在按月记录的降雨量序列中,序列x(t)就可视为含有以12为周期的确定分量,所以序列x(t)可以表示为 ,它的周期图I(ω)处有明显的极大值。当平稳序列的谱分布函数F(λ)具有谱密度ƒ(λ)(即功率谱)时,可用(2π)-1I(λ)去估计ƒ(λ),它是ƒ(λ)的渐近无偏估计。如欲求ƒ(λ)的相合估计(见点估计),可用I(ω)的适当的平滑值去估计ƒ(λ),常用的方法为谱窗估计即取ƒ(λ)的估计弮(λ)为 ,式中wt(ω)称为谱窗函数。谱窗估计是实际应用中的重要方法之一。谱分布F(λ)本身的一种相合估计可由I(ω)的积分直接获得,即 。 研究以上各种估计量的统计性质,改进估计方法,是谱分析的重要内容。时域分析 它的目的在于确定序列在不同时刻取值的相互依赖关系,或者说,确定序列的相关结构。这种结构是用序列的自相关函0,1,…)来描述的,为序列的自协方差函数值,m=Ex(t)是平稳序列的均值。常常采用下列诸式给出m,γ(k),ρ(k)的估计: ,通(k)了解序列的相关结构,称为自相关分析。研究它们的强、弱相合性及其渐近分布等问题,是相关分析中的基本问题。模型分析 20世纪70年代以来,应用最广泛的时间序列模型是平稳自回归-滑动平均模型 (简称ARMA模型)。其形状为: 式中ε(t)是均值为零、方差为σ2的独立同分布的随机序列;和σ2为模型的参数,它们满足: 对一切|z|≤1的复数z成立。p和q是模型的阶数,为非负整数。特别当q=0时,上述模型称为自回归模型;当p=0时, 称为滑动平均模型。根据x(t)的样本值估计这些参数和阶数,就是对这种模型的统计分析的内容。对于满足ARMA模型的平稳序列,其线性最优预测与控制等问题都有较简捷的解决方法,尤其是自回归模型,使用更为方便。G.U.尤尔在1925~1930年间就提出了平稳自回归的概念。1943年,Η.Β.曼和Α.瓦尔德发表了关于这种模型的统计方法及其渐近性质的一些理论结果。一般ARMA模型的统计分析研究,则是20世纪6......余下全文>>
五:时间序列分析法的基本步骤
时间序列建模基本步骤是:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
六:时间序列预测方法有哪些分类,分别适合使用的情况是? 50分
价格预测是指根据价格运动变化的规律性,通过对构成和影响价格变化的各种因素的分析,对商品价格的未来变化和趋势作出判断和推测.
价格预测的类型如下:
1)按时间长短可分为以下4类:
① 长期价格预测
② 中期价格预测
③ 短期价格预测
④ 近期价格预测
2)按价格预测范围大小可分为以下2类:
① 宏观价格预测
② 微观价格预测
3)按商品类别可分为以下4类:
① 工业品价格预测
② 农产品价格预测
③ 劳务价格预测
④ 国际行情价格预测
4)按预测方法可分为以下2类:
① 定性预测
② 定量预测
价格预测内容包括以下4点:
1)商品价格主要因素变化趋势预测
2)价格水平变化趋势预测
3)价格结构变化预测
4)价格效应预测
价格预测方法分为如下2类:
1)定性预测方法
2)定量预测方法
定性预测法种类分为以下3类:
1)类推法:把预测目标同其他类似的事物加以对比分析来推断其发展趋势。
2)集合意见法:参加预测人员凭自己的经验对某种事件出现的可能性作出的一种 估计,然后将这些估计意见集中起来,形成预测意见.
3)专家意见法:根据专家的知识和经验进行价格预测
① 专家会议法
② 专家小组法
指数平滑预测法是指利用过去的数据资料,采取加权移动平均的改变形式取得预测值的一种方法。
七:如何借助excel用季节性预测法预测时间序列
参看这个图文教程
jingyan.baidu.com/...4.html
如下实例用季节性预测求2005年各季度用电量,把数据输入到excel中
输入原始数据,计算三点平滑值,消除季节变动和不规则变动,保留长期趋势。
计算方法:2136=(435+2217+3756)/3
1122.33=(2217+3756+394)/3........以此类推。
计算季节性指标:季节性指标=用电量÷三点滑动值。
计算季节性指标校正值:
校正系数=4÷季节性指标之和=4÷5.525=0.72
校正后季节性指标=季节性指标*校正系数
求预测模型:求出S1和s2同时也利用公式算出at和bt,α取0.2。
计算公式可参照下列表格也可自行百度。
求预测模型为:
求预测值。以2004年第4季度为基期,套用公式计算预测2005年各季度的旅游人数
第一季度:y=(6433.89+486.61*1)*0.42=2906.61
第二季度:y=(6433.89+3486.61*2)*0.99=13273.04
第三季度:y=(6433.89+3486.61*3)*2.15=36321.50
第四季度:y=(6433.89+3486.61*4)*0.44 =8967.35
由此可以计算出2005年全年度的游客人数预测值为:
y=四个季度相加=61468.49 (10的四次方千瓦)
八:时间序列预测法和回归预测的区别
时间序列考虑了时间的作用
九:时间序列分析法的简介
它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。例如,记录了某地区第一个月,第二个月,……,第N个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。随着计算机的相关软件的开发,数学知识不再是空谈理论,时间序列分析主要是建立在数理统计等知识之上,应用相关数理知识在相关方面的应用等。