一:宏观量子隧道效应的介绍
宏观量子隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。
二:量子隧道效应的理论依据是啥
量子隧道效应的理论依据可以说是不确定性原理(baike.baidu.com/view/24947.htm)或波粒二象性(baike.baidu.com/view/7696.htm),这两者是密切的一体两面的关系。
一般情况下,某个(群)粒子的能量或动量总含有一定的不确定性,这样,经典物理看来是有确定能量或动量的它们绝不可能越过某个明显的势垒;但在量子力学看来,因总有不确定,可以有一定的概率,粒子的能量(或动量)会在短暂的时间(或狭小的空间)中超过势垒的高度,从而越过;在经典看来,这就像从隧道穿过。
从波粒二象性的角度理解,可以视为粒子有了波动的在时空中无限拓展的弥漫性,于是,除非是无限高或无限厚的势垒,粒子总会向势垒以外弥漫出去一部分。
在数学形式上,上述两种描述是完全一样的。
三:量子隧道效应的介绍
英文名称:Quantum tunnelling effect量子隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。如图,纵坐标为能量的多少。按经典理论,粒子为脱离此能量的势垒,必须从势垒的顶部越过。但由于量子力学中的量子不确定性,时间和能量为一组共轭量。在很短的时间中(即时间很确定),能量可以很不确定,从而使一个粒子看起来像是从“隧道”中穿过了势垒。在诸如能级的切换,两个粒子相撞或分离的过程(如在太阳中发生的仅约1000万摄氏度的“短核聚变”)中,量子隧道效应经常发生。
四:宏观量子隧道效应的应用
早期曾用来解释纳米镍粒子在低温继续保持超顺磁性。近年来人们发现Fe-Ni薄膜中畴壁运动速度在低于某一临界温度时基本上与温度无关。于是,有人提出量子理想的零点震动可以在低温起着类似热起伏的效应。从而使零温度附近微颗粒磁化矢量的重取向,保持有限的弛豫时间,即在绝对零度仍然存在非零的磁化反转率。宏观量子隧道效应的研究对基础研究及实用都有着重要的意义,它限定了磁带、磁盘进行信息贮存的时间极限。量子尺寸效应,隧道效应将会是未来电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限。当电子器件进一步细微化时,必须要考虑上述的量子效应。
五:扫描隧道显微镜原理是否是量子隧道效应
对的。