结构型传感器

一:结构型传感器与结构材料有关系吗

结构型传感器是以结构(如形状、尺寸等)为基础,利用某些物理规律来感受(敏感)被测量,并将其转换为电信号实现测量的。例如电容式压力传感器,必须有按规定参数设计制成的电容式敏感元件,当被测压力作用在电容式敏感元件的动极板上时,引起电容间隙的变化导致电容值的变化,从而实现对压力的测量。又比如谐振式压力传感器[1] ,必须设计制作一个合适的感受被测压力的谐振敏感元件,当被测压力变化时,改变谐振敏感结构的等效刚度,导致谐振敏感元件的固有频率发生变化,从而实现对压力的测量。

二:说明结构性传感器和物性型传感器的区别

结构性传感器

通过结构功能实现感应

物性传感器

根据某些特点性质感应

三:结构型传感器一般由 组成 其中什么是传感器的核心

陀螺仪测角速度的,加速度是测线性加速度的。前者是惯性原理,后者是利用的力平衡原理。 加速度计在较长时间的测量值是正确的,而在较短时间内由于信号噪声的存在,而有误差。陀螺仪在较短时间内则比较准确而较长时间则会有与漂移而存有误差。因此,需要两者(相互调整)来确保航向的正确。 现在一般的姿态方面的惯性应用,如IMU(惯性测量单元),由三轴陀螺仪和三轴加速度计组合而成。

四:什么是物性型传感器?什么是结构型传感器? 35分

物性型传感器是利用物质定律构成的,如胡克定律、欧姆定律等。物质定律是表示物质某种客观性质的法则。这种法则,大多数是以物质本身的常数形式给出。这些常数的大小,决定了传感器的主要性能。因此,物理型传感器的性能随材料的不同而异。例如,光电管就是物理型传感器,它利用了物质法则中的外光电效应。显然,其特性与涂覆在电极上的材料有着密切的关系。又如,所有半导体传感器,以及所有利用各种环境变化而引起的金属、半导体、陶瓷、合金等特性能变化的传感器,都属于物性型传感器。

结构型传感器是利用物理学中场的定律构成的,包括动力场的运动定律,电磁场的电磁定律等。物理学中的定律一般是以方程式给出的。对于传感器来说,这些方程式也就是许多传感器在工作时的数学模型。这类传感器的特点是传感器的工作原理是以传感器中元件相对位置变化引起场的变化为基础,而不是以材料特性变化为基础。

五:什么是传感器?传感器的组成及分类是怎样的

传感器是敏感于待测非电量并可将之转换为与之相对应的电信号的元件。

组成主要包括:敏感元件,转换元件和其他辅助部件。

传感器分类方式多样,可以按工作机理分为结构型传感器,物性型传感器,复合型传感器;按被测量可以分为物理量传感器,化学量传感器,生物量传感器;按敏感元件可以分为半导体传感器,陶瓷传感器,光导纤维传感器,高分子材料传感器,金属传感器;按能量关系可以分为能量转换型传感器,能量控制型传感器。还有其他多种分类方法。

六:压电式传感器属于()A电流型传感器 B结构型传感器 C电压型传感器 D物理型传感器

基于压电效应的传感器,是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换订抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。

七:传感器的发展历史

传感器的发展史及新型传感器的发展方向

今天,信息技术对社会发展信、科学进步起到了决定性的作用。现在信息技术的基础包括信息采集、信息传输与信息处理,而信息的采集离不开传感器技术。所以说传感器是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋,

最后美国开始不要

第二段

近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。

顶微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。

MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。

除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。

多传感器数据融合技术正在形成热点,它形成于20世纪80年代,它不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。

多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。

我国传感器产业要适应技术潮流,向国内外两个市场相结合的国际化方向发展,让传感器和检测仪表抓住信息化的发展机遇。

温度传感器是最早开发,应用最广的一类传感器。根据美国仪器学会的调查,1990年,温度传感器的市场份额大大超过了其他的传感器。从17世纪初伽利略发明温度计开始,人们开始利用温度进行测量。真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。五十年以后,另一位德国人西门子发明了铂电阻温度计。在半导体技术的支持......余下全文>>

八:电阻式传感器的结构

结构:由电阻元件及电刷(活动触点)两个基本部分组成。电刷相对于电阻元件的运动可以是直线运动、转动和螺旋运动,因而可以将直线位移或角位移转换为与其成一定函数关系的电阻或电压输出。电位器的结构与材料(1)电阻丝: 康铜丝、铂铱合金及卡玛丝等(2)电刷: 常用银、铂铱、铂铑等金属(3)骨架:常用材料为陶瓷、酚醛树脂、夹布胶木等绝缘材料,骨架的结构形式很多,常用矩形。

九:传感器技术的发展历程

传感技术大体可分3代,第1代是结构型传感器.它利用结构参量变化来感受和转化信号。例如:电阻应变式传感器,它是利用金属材料发生弹性形变时电阻的变化来转化电信号的。第2代传感器是70年代开始发展起来的固体传感器,这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成的.如:利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器等。70年代后期,随着集成技术、分子合成技术、微电子技术及计算机技术的发展,出现集成传感器.集成传感器包括2种类型:传感器本身的集成化和传感器与后续电路的集成化.例如:电荷藕合器件(CCD),集成温度传感器AD590集成霍尔传感器UGN3501等.这类传感器主要具有成本低、可靠性高性能好、接口灵活等特点集成传感器发展非常迅速,现已占传感器市场的2/3左右,它正向着低价格、多功能和系列化方向发展。第3代传感器是80年代刚刚发展起来的智能传感器.所谓智能传感器是指其对外界信息具有一定检测、自诊断、数据处理以及自适应能力,是微型计算机技术与检测技术相结合的产物。80年代智能化测量主要以微处理器为核心,把传感器信号调节电路微计算机、存贮器及接口集成到一块芯片上,使传感器具有一定的人工智能.90年代智能化测量技术有了进一步的提高,在传感器一级水平实现智能化,使其具有自诊断功能、记忆功能、多参量测量功能以及联网通信功能等。

扫一扫手机访问

发表评论