卡方分布的意义

一:卡方分布的意义是什么?求简单通俗

就是检验抽样的样本是否符合指定的概率分布。

若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其卡方分布分布规律称为χ2(n)分布(chisquare distribution),其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正态分布一样。

二:卡方分布的特点

其中,是伽玛函数。 分布的均值为自由度 n,记为 E() = n。分布的方差为2倍的自由度(2n),记为 D() = 2n。 1)分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 n 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1.2)分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。4) 若互相独立,则:服从分布,自由度为;服从分布,自由度为。

三:卡方检验中卡方值代表什么,意义上什么

四格表资料的卡方检验

四格表资料的卡方检验用于进行两个率或两个构成比的比较。

1. 专用公式:

若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d),

自由度v=(行数-1)(列数-1)

2. 应用条件:

要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。

行X列表资料的卡方检验

行X列表资料的卡方检验用于多个率或多个构成比的比较。

1. 专用公式:

r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]

2. 应用条件:

要求每个格子中的理论频数T均大于5或1

列联表资料的卡方检验:

同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。

1. R*C 列联表的卡方检验:

R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行X列表资料的卡方检验相同。

2. 2*2列联表的卡方检验:

2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=(ad-bc)2n/(a+b)(c+d)(a+c)(b+d),此时用于进行配对四格表的相关分析,如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。

列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。

参考资料:http:/...40.htm

四:卡方分布的解释

可以看成是一个随机变量的概率分布,卡方分布是连续分布,是由服从正态分布的随机变量的平方,求和构成,随机变量ξi服从正态分布,是连续分布,因此,卡方分布也是连续分布,若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξ2i构成一新的随机变量,其分布规律称为χ2(n)分布,其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正态分布一样。χ2分布的密度函数比较复杂这里就不给出了,同学们也不用去记了。卡方分布是由正态分布构造而成的一个新的分布,这也正反映了前面所说的正态分布的重要性。

对于任意正整数 k, 自由度为 k 的卡方分布是一个随机变量X的机率分布

在这个式子中,Z1, ..., Zk 是相互独立的常态变量,且每一个变量的数学平均值都为0,方差为1。也就是说X是标准常态变量的平方和。这种分布一般被记做

χ2分布在一象限内,呈正偏态,随着参数 n 的增大,χ2分布趋近于正态分布。

χ2分布的均值为自由度 n,记为 Eχ2=n,这里符号“E”表示对随机变量求均值;χ2分布的方差为2倍的自由度(2n),记为 Dχ2=2n,这里符号“D”表示对随机变量求方差。从χ2分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。

χ2分布具有可加性:若有K个服从χ2分布且相互独立的随机变量,则它们之和仍是χ2分布,新的χ2分布的自由度为原来K个χ2分布自由度之和。表示为:

χ2分布是连续分布,但有些离散分布也服从χ2分布,尤其在次数统计上非常广泛。

χ2分布概率表

χ2分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在χ2分布中得对每个分布编制相应的概率值,这通过χ2分布表中列出不同的自由度来表示,在χ2分布表中还需要如标准正态分布表中给出不同 P 值一样,列出概率值,只不过这里的概率值是χ2值以上χ2分布曲线以下的概率。由于χ2分布概率表中要列出很多χ2分布的概率值,所以χ2分布中所给出的 P 值就不象标准正态分布中那样给出了400个不同的 P 值,而只给出了有代表性的13个值,因此χ2分布概率表的精度就更差,不过给出了常用的几个值,足够在实际中使用了。

查χ2分布概率表时,按自由度及相应的概率去找到对应的χ2值。如上图所示的单侧概率χ20.05(7)=14.1的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率0.05这一列,行列的交叉处即是14.1。

表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为章 7 的卡方分布中,得到双侧概率为0.05所对应的上下端点可以这样来考虑:双侧概率指的是在上端和下端各划出概率相等的一部分,两概率之和为给定的概率值,这里是0.05,因此实际上上端点以上的概率为0.05/2=0.025,用概率0.025查表得上端点的值为16,记为χ20.05/2(7)=16。下端点以下的概率也为0.025,因此可以用0.975查得下端点为1.69,记为χ21-0.05/2(7)=1.69。

当然也可以按自由度及χ2值去查对应的概率值,不过这进往往只能得到一个大概的结果,因为χ2分布概率表的精度有限,只给了 13 个不同的概率值进行查表。例如,要在自由度为 18 的χ......余下全文>>

五:简述卡方检验的用途

卡方检验一般用于检验一个样本是否符合预期的一个分布。

原理就是,把预期的分布分成几个互不相交的区域,每个区域的理论概率可知。

然后看样本值落在这些区域的频率,是否跟理论概率差不多。

六:统计学里面的卡方分布和t分布 侧分位 侧分位是什么意义??

有知道的吗?PS: 能用一句话说说,什么是正态分布吗?最好通俗点,容易懂得。希望别小看这些基本的概念。

扫一扫手机访问

发表评论