气相色谱原理

一:简要说明气相色谱分析的基本原理。

气相色谱分析的基本原理:

气相色谱分析是使混合物中各组分在两相间进行分配,其中一相是不动的(固定相),另一相(流动相)携带混合物流过此固定相,与固定相发生作用,在同一推动力下,不同组分在固定相中滞留的时间不同,依次从固定相中流出,又称色层法或者层析法。,组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。

气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。

气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的单体作固定相的叫气液色谱。

按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。

按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6毫米。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有0.1~0.5毫米的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为0.25~0.5毫米。

在实际工作中,气相色谱法是以气液色谱为主。

二:气相色谱原理?

一、气相色谱法有哪些特点? 答:气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点: 1、高灵敏度:可检出10-10 克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。 2、高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。 3、高效能:可把组分复杂的样品分离成单组分。 4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。 5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。 6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。 7、设备和操作比较简单仪器价格便宜。

二、气相色谱的分离原理为何? 答:气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

三、何谓气相色谱?它分几类? 答:凡是以气相作为流动相的色谱技术,通称为气相色谱。一般可按以下几方面分类:

1、按固定相聚集态分类:

(1)气固色谱:固定相是固体吸附剂,

(2)气液色谱:固定相是涂在担体表面的液体。

2、按过程物理化学原理分类:

(1)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。

(2)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。

(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。

3、按固定相类型分类:

(1)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。

(2)纸色谱:以滤纸为载体,

(3)薄膜色谱:固定相为粉末压成的薄漠。

4、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。

四、气相色谱法简单分析装置流程是什么? 答:气相色谱法简单分析装置流程基本由四个部份组成: 1、气源部分 2、进样装置 3、色谱柱 4、鉴定器和记录器

五、气相色谱法的一些常用术语及基本概念解释? 答:1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。

2、色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。

3、基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。

4、峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以x1/2表示。

5、峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。

6、死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。从进样到出现色谱峰最高值所需的时间称保留时间,以tr表示。保留时间与死时间之差称校正保留时间。以Vd表示。

7、死体积,保留体积与校正保留体积:死时间与载气平均流速的乘积称为死体积,以Vd表示,载气平均流速以Fc表示,Vd=tdxFc。保留时间与载气平均流速的乘积称保留体积,以Vr表示,Vr=trxFc。

8、保留值与相对保留值:保留值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表......余下全文>>

三:气象色谱仪 FID TCD 的原理

气相色谱仪

◆ 用途:

气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同, 虽然载气流速相同,各组份在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。 根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。这就是气象色谱仪的工作原理。

◆气相色谱仪的特点

2001型气相色谱仪,是由微型计算机控制的多功能实验室用分析仪器,具有热导池、氢焰离子化、电子捕获、火焰光度、氮磷五种检测器,可配填充柱或毛细管柱。仪器可进行恒温操作或五阶程序升温操作。仪器集成度高,设计先进,实现了较高程度自动化,可通过键盘实现检测器参数、温度参数设置。可对填充柱及毛细管及柱头压力实时显示,仪器采用单气路结构。2001型气相色谱仪结构合理性能稳定可靠,操作简单,维修方便。可应用于包装、油墨、石油、化工、农药、医药卫生、商品检验、环境保护以及高等院校等

生产及科研部门。

◆ 技术指标:

△五阶程序升温,升温速率0.1~30℃/min,以0.1℃为增量,初时至终时范围0~255 min,以1min为增量。

△柱温箱内部尺寸(mm):长270×宽220×高260

△仪器外型尺寸(mm):长655×宽460×高450

△重量:47kg

△控温精度:±0.1℃-±0.2℃,

△控温范围:室温+6℃-399℃

△机器具有自诊断、掉电保护、秒表、文件存储及调用等功能

(一)检测器部分

根据不同的样品分析要求,有五种检测器可供选择

△FID氢火焰检测器

△TCD热导池检测器

△ECD电子捕获检测器

△NPD氮磷检测器

△FPD火焰光度检测器

(二)进样器部分

为了得到可靠的检测数据,适应不同的分析要求,同时具有填充柱和毛细管柱两个进样口。具有柱头进样、玻璃内衬进样、分流/不分流龚样器。可满足不同口径的毛细管、填充柱分析。进样口具有先进的进样导向器,各种口径毛细管的玻璃内衬带有特质弹簧,能自动找平衡定位。

(三)柱箱部分

仪器的大柱箱紧凑、风道布局合理、适度均匀、升温/降温速度快,因此,改善了分析结果的重现性,提高了分析能力。自动后开门,从350℃降至60℃仅需8分钟。

(四)键盘/显示部分

全中文键盘输入方式,采用大屏幕LCD显示器,左四行为设置区,右四行为实际显示区,清晰、直观、方便。

(五)气路部分

采用背压控制方式,可准确制毛细管柱的载气流速。用质量型流量调节阀决定总流量,用背压阀控制毛细管柱输入压力,还可用隔膜清洗阀调节对进样垫进行吹扫的隔膜清洗流量。填充柱气路采用独力气路设计。因此同时可装一个填充柱和一付毛细管柱,互不影响。

(六)气象色谱仪的工作原理:

原理是:分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息。可以用标准光谱图再结合其它手段进行定性分析。

根据Lambert-Beer定律:A=εbc,(A为吸光度,ε为摩尔吸光系数,为液池厚度,c为溶液浓度)可以对溶液进行定量分析。

你可以用三种农药的波长在某溶......余下全文>>

四:色谱法的基本原理是什么

色谱法(chromatography)又称色谱分析、色谱分析法、层析法,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。

色谱法基本原理是指在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动,故称涡流扩散。

1.涡流扩散项 A

在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动,故称涡流扩散。

由于填充物颗粒大小的不同及填充物的不均匀性,使组分在色谱

柱中路径长短不一,因而同时进色谱柱的相同组分到达柱口时间并

不一致,引起了色谱峰的变宽。色谱峰变宽的程度由下式决定:

A = 2λdp

上式表明,A与填充物的平均直径dp的大小和填充不规则因子λ有关,与流动相的性质、线速度和组分性质无关。为了减少涡流扩散,提高柱效,使用细而均匀的颗粒,并且填充均匀是十分必要的。对于空心毛细管,不存在涡流扩散。因此 A = 0。

2. 分子扩散项 B / u (纵向扩散项)

纵向分子扩散是由浓度梯度造成的。组分从柱入口加入,其浓度分布的构型呈“塞子”状。它随着流动相向前推进,由于存在浓度梯度,“塞子”必然自发的向前和向后扩散,造成谱带展宽。分子扩散项系数为 B = 2γ Dg

γ是填充柱内流动相扩散路径弯曲的因素,也称弯曲因子,它反映了固定相颗粒的几何形状对自由分子扩散的阻碍情况。

Dg为组分在流动相中扩散系数(cm3·s-1),分子扩散项与组分在流动相中扩散系数Dg成正比.

Dg与流动相及组分性质有关:

(a) 相对分子质量大的组分Dg小,Dg反比于流动相相对分子质量的平方根,所以采用相对分子质量较大的流动相,可使B项降低;

(b) Dg随柱温增高而增加,但反比于柱压。

另外纵向扩散与组分在色谱柱内停留时间有关,流动相流速小,组分停留时间长,纵向扩散就大。因此为降低纵向扩散影响,要加大流动相速度。对于液相色谱,组分在流动相中纵向扩散可以忽略。

3. 传质阻力项 Cu

由于气相色谱以气体为流动相,液相色谱以液体为流动相,它们的传质过程不完全相同。

(1)气液色谱

传质阻力系数C包括气相传质阻力系数Cg和液相传质阻力系数C1两项,即

C = Cg+ C1

气相传质过程是指试样组分从气相移动到固定相表面的过程。这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。有的分子还来不及进入两相界面,

就被气相带走;有的则进入两相界面又来不及返回气相。这样使得试样在两相界面上不能瞬间达到分配平衡,引起滞后现象,从而使色谱峰变宽。对于填充柱,气相传质阻力系数Cg为:

Cg= 0.01k2 / (1 + k)2 · dp / Dg

式中k为容量因子。由上式看出,气相传质阻力与填充物粒度dp的平方成正比,与组分在载气流中的扩散系数Dg成反比。因此,采用粒度小的填充物和相对分子质量小的气体(如氢气)做载气,可使Cg减小,提高柱效。

液相传质过程是指试样组分从固定相的气/液界面移动到液相内部,并发生质量交换,达到分配平衡,然后又返回气/液界面的传质过程。这个过程也需要一定的时间,此时,气相中组分的其它......余下全文>>

五:简要说明气相色谱分析的基本原理。

GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离:待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每揣组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。

就是纸层析的改进吧!

六:气相色谱法是一种什么的分析方法

气相色谱仪以气体作为流动相(载气)。当样品由微量注射器注入进样器汽化后,被载气携带进入填充柱或毛细管色谱柱。由于样品中的流动相(气相)和固定相(液相或气相)间分配或吸附系数的差异,在载气的冲洗下各组分在两相间作反复多次分配,使各组份在柱中得到分离,依次从柱后流出。然后用接在柱后的检测器,根据组份的物理、化学特性,将各组分按顺序检测出来。

七:气相色谱法的优缺点

①分离效率高,分析速度快,例如可将汽油样品在两小时内分离出200多个色谱峰,一般的样品分析可在20分种内完成。②样品用量少和检测灵敏度高,例如气体样品用量为 1毫升,液体样品用量为0.1微升固体样品用量为几微克。用适当的检测器能检测出含量在百万分之十几至十亿分之几的杂质。③选择性好,可分离、分析恒沸混合物,沸点相近的物质,某些同位素,顺式与反式异构体邻、间、对位异构体,旋光异构体等。④应用范围广,虽然主要用于分析各种气体和易挥发的有机物质,但在一定的条件下,也可以分析高沸点物质和固体样品。应用的主要领域有石油工业、环境保护、临床化学、药物学、食品工业等。 作者:李浩春 卢佩章 定价:¥ 25.00 元出版社:科学出版社 出版日期:1998年08月ISBN:7-03-003123-7/O·572 开本:32 开类别:分析化学及仪器 页数:391 页 第一篇气相色谱法基础第一章绪论1.1气相色谱法的特点1.2气相色谱法术语参考文献第二章气相色谱仪2.1填充柱气相色谱仪2.2毛细管柱气相色谱仪2.3制备型气相色谱仪2.4气相色谱-质谱联用仪(GC/MS)2.5气相色谱-傅里叶变换红外光谱联用仪(GC/FT-TR)参考文献第三章气相色谱气流系统3.1气体3.2气体流量的控制3.3气体的纯化3.4气体压力与流量的测量3.5载气流量的校正第四章气相色谱分离系统4.1固定相4.1.1固体固定相4.1.2液体固定相4.2色谱柱4.2.1填充色谱柱4.2.2空心柱4.3填充柱与空心柱的比较参考文献第五章气相色谱检测系统5.1色谱的检测5.2检测器的性能与分类5.2.1检测器的性能要求5.2.2检测器的分类5.3检测器的评价5.3.1噪声与飘移5.3.2检测器的线性与线性范围5.3.3检测器的灵敏度5.3.4检测吕的检测限5.3.5检测器的最小检测量和最小检测浓度5.3.6检测器的响应时间5.3.7检测的相对灵敏度5.4气要色谱常用检测器5.4.1热导检测器(TCD)5.4.2氢火焰离子化检测器(FID)5.4.3氮磷检测器(NPD)5.4.4电子俘获检测器(ECD)5.4.5火焰光度检测器(FPD)参考文献第六章气相色谱数据处理系统6.1数据处理的目的和方法6.2数据处理装置6.2.1记录器6.2.2积分仪6.2.3数据处理站6.3常用色谱软件参考文献第七章定性分析7.1恒温时色谱定性指标7.1.1调整保留时间7.1.2保留体积7.1.3相对保留值7.1.4保留指数7.2程序升温时色谱定性指标7.3保留值定性法7.3.1保留值对比定性法7.3.2已知组分定性法7.4检测器定性法7.4.1GC/MS定性7.4.2GC/FT-IR定性7.4.3选择性检测器定性7.5化学试齐定性法7.5.1消去法7.5.2官能团法7.6反应色谱定性法7.6.1次甲基插入反应法7.6.2氢化反应法7.7保留值数据7.7.1纯样品测定7.7.2保留值规律参考文献第八章定量分析8.1色谱峰的测量8.2定量校正因子8.2.1分类与换算8.2.2校正因子的测定8.2.3面积相对校正因子的计算方法8.3定量计算方法8.3.1归一化法8.3.2内标法8.3.3外标法8.4影响准确定量的主要因素参考文献第九章辅助技术9.1柱切换技术9.1.1坪 面阀住切换技术9.1.2压力管柱切换技术9.2化学衍生方法9.2.1硅烷化反应法9.2.2酰化反应法9.2.3酯化反应法9.3进样技术9.3.1分流式进样法9.3.2Grob式不分流进样法9......余下全文>>

八:气相色谱法测co的原理

目前气象色谱多使用FID和TCD检测器,FID检测限低,但只对有机物响应,TCD测量范围广,但检测限较高,灵敏度低。分析微量C0时多采用FID检测器,用镍转化炉将C0转化为甲烷后测量甲烷的浓度,因为FID是对C数响应的,所以测出甲烷的浓度也就得到了C0的浓度

九:气相色谱法的检测器有哪些,原理是什么

气相色谱仪检测范围是根据它的检测器和色谱柱特性来决定的,范围很广,现有的检测器种类就有50多种,色谱柱类型不胜数,理论上只要某种物质色谱柱能分离,检测器有响应,就能够用气相检测检测物质范围包括大部分低沸点的有机物,无机物,气体等。

十:气相色谱分离的原理是什么?比较色谱法与电化学分析法,光学分析法的区别

气相色谱原理:样品与固定相(色谱柱)的作用力大小不同,在色谱柱中的保留时间也不同。通过时间的不同来定性。在通过和检测器的信号来定量。电化学分析法和光学分析法和气相色谱法,本质的区别还是检测器的不同。光化学分析法,主要是利用样品对不同波长光是吸收度的不同定性。电化学分析法主要是利用物质的氧化性和还原性的高低,在反应是岁产生的电荷不同来定性和定量

扫一扫手机访问

发表评论