正态分布作用

一:正态分布形成的原理

首先,基本上每个人的学习都是相互独立的,所以可认为n个人的成绩是n个相互独立的随机变量X1,X2.....Xn,同时他们具有自己的数学期望和方差(每个人参加多次考试的成绩都会有所波动嘛),所以满足中心极限定理二李雅谱诺夫定理的条件,故无论各个随机变量服从什么分布,在满足上述定理的条件下,当人数较多时,即n较大时,ΣX就近似的服从正态分布。所以无论每个人的学习情况怎么样,总体是近似正太分布的。关于中心极限定理二李雅谱诺夫定理的求证可参考以下网页wenku.baidu.com/...cjC80O

二:成绩正态分布的作用

在进行选拔性测验时(如中考、高考),由于是一种难度测验,它期望学生的测验分数呈现正态分布,出现比较极端的分数分布,从而有利于甄别和选拔。因此,分析某次考试的成绩分布是否符合选拔性测验的选拔目的,其中重要参考指标之一就是看成绩符合正态分布规律。

三:如果一组数据满足正态分布,请问意义是什么,数据有什么特点

1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。

2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。 4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。

5、u变换:为了便于描述和应用,常将正态变量作数据转换。

应用

1. 估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。

2. 制定参考值范围 (1)正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。 (2)百分位数法 常用于偏态分布的指亥。表3-1中两种方法的单双侧界值都应熟练掌握。

3. 质量控制:为了控制实验中的测量(或实验)误差,常以 作为上、下警戒值,以 作为上、下控制值。这样做的依据是:正常情况下测量(或实验)误差服从正态分布。

4. 正态分布是许多统计方法的理论基础。 检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。

估计正态分布资料的频数分布

例:某地1993年抽样调查了100名18岁男大学生身高(cm),其均数=172.0cm,标准差s=4.0cm,①估计该地18岁男大学生身高在168cm以下者占该地18岁男大学生总数的百分数

在1个标准波动外的一半,即(1-68.3%)/2=15.65%

四:一般正态分布的标准化有何意义?

查了一个网页,但复制不了,你去看看吧。kaoyan.eol.cn/....shtml

参考资料:kaoyan.eol.cn/...辨歇玻忙ml

五:正态分布的含义

百科名片正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。 normal distribution

一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。 服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。

生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来罚似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。

正态分布概率密度函数解析式

附:这种分布的概率密度函数为:(如右图)

正态分布 1.正态分布

若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号 ~ 。其中μ、σ2 是两个不确定常数,是正态分布的参数,不同的μ、不同的σ2对应不同的正态分布。

正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。

2.正态分布的特征

服从正态分布的变量的频数分布由μ、σ完全决定。

(1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。

(2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。 也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

标准正态分布 1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ2为0和1,通常用ξ(或Z)表示服从标准正态分布的变量,记为 Z~N(0,1)。

2.标准化变换:此变换有特性:......余下全文>>

扫一扫手机访问

发表评论