一:时间序列差分后仍不平稳怎么办
zhidao.baidu.com/question/420825334.html?oldq=1有个类似的问题,我觉得回答的人说的很明白,建议看一下
参考资料:zhidao.baidu.com/question/420825334.html?oldq=1
二:想问一下,在一阶差分之后还是不平稳,二阶差分也不平稳应该怎么办
这种序列数据在经济金融中比较少见,它是爆炸性增长的,一般不可持久。
有种可能是因为 序列数据太少(或观察值不准确),还不足以反映变化规律。这时要加多观测值。
如都不是,好像就没办法了。
三:时间序列无论怎么差分都不平稳,那怎么预测呢?
#额。。你居然使用matlab做的题= =。。。我是用R语言做的。。。matlab不知道代码怎么写。。但意思应该是一样的。。都是用那个automated model selection来做。。。#
额话说我是大学本科数学还有统计专业的。。不知道能不能帮上你,太高深的也不懂,你试试。
我记得我之前做过类似的题。。你先载入library(forecast)然后nsdiffs一下你的data和周期。。原来数据和log之后都行。。看哪个diagnostic之后通过。。然后用auto.arima就是AIC或者BIC method自动fit个model。test model行不行。最后用forecast往下预测几个周期就好啦。。第一个图是我以前做的那个题的全部代码。。下面我截图了两段代码。。你试试。。
用auto.arima去fit你的data看一下。
然后我当时是周期12,往下预测5段的。。所有h=5*12=60.。。你用你的data往下试试。。
>nsdiffs(data,6)
之后看一下差分次数多少。。不行的话你看看log之后可以么?
>nsdiffs(log(data),6)
>ndiffs(diff(log(data),6))
.....
啊对了。。突然想到。。既然要预测的话你有试过auto.arima么。。让R自己弄阶数吧。。。用AIC,BIC来预测后面的。。。等下啊。。我写段代码给你。。
你看看不行的话,能把数据发给我么~~我也蛮想试下怎么往下预测的。。恩~~交流万岁~~
四:如何深入理解时间序列分析中的平稳性
声明:本文中所有引用部分,如非特别说明,皆引自Time Series Analysis with Applications in R.
接触时间序列分析才半年,尽力回答。如果回答有误,欢迎指出。
对第一个问题,我们把它拆分成以下两个问题:
Why stationary?(为何要平稳?)
Why weak stationary?(为何弱平稳?)
Why stationary?(为何要平稳?)
每一个统计学问题,我们都需要对其先做一些基本假设。如在一元线性回归中(),我们要假设:①不相关且非随机(是固定值或当做已知)②独立同分布服从正态分布(均值为0,方差恒定)。
在时间序列分析中,我们考虑了很多合理且可以简化问题的假设。而其中最重要的假设就是平稳。
The basic idea of stationarity is that the probability laws that govern the behavior of the process do not change over time.
平稳的基本思想是:时间序列的行为并不随时间改变。
正因此,我们定义了两种平稳:
Strict stationarity: A time series {} is said to be strictly stationary if the joint distribution of ,, · · ·, is the same as that of,, · · · ,for all choices of natural number n, all choices of time points ,, · · · , and all choices of time lag k.
强平稳过程:对于所有可能的n,所有可能的,, · · · , 和所有可能的k,当,, · · ·,的联合分布与,, · · · ,相同时,我们称其强平稳。
Weak stationarity: A time series {} is said to be weakly (second-order, or co-variance) stationary if:
① the mean function is constant over time, and
② γ(t, t − k) = γ(0, k) for all times t and lags k.
弱平稳过程:当①均值函数是常数函数且②协方差函数仅与时间差相关,我们才称其为弱平稳。
此时我们转到第二个问题:Why weak stationary?(为何弱平稳?)
我们先来说说两种平稳的差别:
两种平稳过程并没有包含关系,即弱平稳不一定是强平稳,强平稳也不一定是弱平稳。
一方面,虽然看上去强平稳的要求好像比弱平稳强,但强平稳并不一定是弱平稳,因为其矩不一定存在。
例子:{}独立服从柯西分布。{}是强平稳,但由于柯西分布期望与方差不存在,所以不是弱平稳。(之所以不存在是因为其并非绝对可积。)
另一方面,弱平稳也不一定是强平稳,因为二阶矩性质并不能确定分布的性质。
例子:,,互相独立。这是弱平稳却不是强平稳。
知道了这些造成差别的根本原因后,我们也可以写出两者的一些联系:
一阶矩和二阶矩存在时,强平稳过程是弱平稳过程。(条件可简化为二阶矩存在,因为)
当联合分布服从多元正态分布时,两平稳过程等价。(多元正态分布的二阶矩可确定分布性质)
而为什么用弱平稳而非强平稳,主要原因是:强平稳条件太强......余下全文>>
五:非平稳时间序列和平稳时间序列的区别
要对非平稳时间序列
进行平稳化处理
有利于资源的合理利用
六:平稳时间序列和非平稳时间序列的区别
要对非平稳时间序列 进行平稳化处理 有利于资源的合理利用
七:以下哪个时间序列模型不属于平稳时间序列模型
主成份分析是为了提前众多指标中有典型代表性的几个主要成分,其中主成分的一种计算得分方法是用回归方法
ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。
ARIMA模型建立在历史数据的基础上,故搜集的历史数据越多,模型越准确。
每月储蓄数据.可以看作是随着时间的推移而形成的一个随机时间序列,通过对该时间序列上储蓄值的随机性、平稳性以及季节性等因素的分析,将这些单月储蓄值之间所具有的相关性或依存关系用数学模型描述出来,从而达到利用过去及现在的储蓄值信息来预测未来储蓄情况的目的。
八:非平稳时间序列模型有哪几个
1、 时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。 2、 宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。 3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。 4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回归模型AR(p):如果时间序列 满足 其中 是独立同分布的随机变量序列,且满足: , 则称时间序列 服从p阶自回归模型。或者记为 。 平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。 (2) 移动平均模型MA(q):如果时间序列 满足 则称时间序列 服从q阶移动平均模型。或者记为 。 平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列 满足 则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。 特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。 二、时间序列的自相关分析 1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。 2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。 3、 样本自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。 4、 样本的偏自相关函数: 其中, 。 5、 时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: ①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; ②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。 6、 判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。 7、 ARMA模型的自相关分析 AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。 三、单位根检验和协整检验 1、单位根检验 ①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模......余下全文>>