抽样平均误差

一:抽样平均误差的影响因素有哪些

①抽样单位的数目。在其他条件不变的情况下,抽样单位的数目越多,抽样误差越小;抽样单位数目越少,抽样误差越大。这是因为随着样本数目的增多,样本结构越接近总体。抽样调查也就越接近全面调查。当样本扩大到总体时,则为全面调查,也就不存在抽样误差了。

②总体被研究标志的变异程度。在其他条件不变的情况下,总体标志的变异程度越小,抽样误差越小。总体标志的变异程度越大,抽样误差越大。抽样误差和总体标志的变异程度成正比变化。这是因为总体的变异程度小,表示吝惜体各单位标志值之间的差异小。则样本指标与总体指标之间的差异也可能小;如果总体各单位标志值相等,则标志变动度为零,样本指标等于总体指标,此时不存在抽样误差。

③抽样方法的选择。重复抽样和不重复抽样的抽样误差的大小不同。采用不重复抽样比采用重复抽样的抽样误差小。

④抽样组织方式不同。采用不同的组织方式,会有不同的抽样误差,这是因为不同的抽样组织所抽中的样本,对于总体的代表性也不同。通常,我们不常利用不同的抽样误差,做出判断各种抽样组织方式的比较标准。

二:抽样平均误差和估计标准误的区别

标准差与标准误有何区别和联系? 标准差和标准误都是变异指标,但它们之间有区别,也有联系. 区别: ①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差; ②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等.标准误用于估计参数的可信区间,进行假设检验等. ③它们与样本含量的关系不同:当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 .联系:标准差,标准误均为变异指标,当样本含量不变时,标准误与标准差成正比.

三:抽样平均误差的抽样平均误差

定义抽样平均误差是抽样平均数或抽样成数的标准差,反映了抽样指标与总体指标的平均误差程度。多数样本指标与总体指标都有误差,误差有大、有小,有正、有负,抽样平均误差就是将所有的误差综合起来,再求其平均数,所以抽样平均误差是反映抽样误差一般水平的指标。抽样平均数的平均误差:重复抽样:此公式说明,抽样平均误差与总体标准差成正比,与样本容量成反比。(当总体标准差未知时,可用样本标准差代替)(教材P180例题)通过例题可说明以下几点:①样本平均数的平均数等于总体平均数。②抽样平均数的标准差仅为总体标准差的③可通过调整样本单位数来控制抽样平均误差。例题:假定抽样单位数增加 2 倍、0.5倍时,抽样平均误差怎样变化?解:抽样单位数增加 2 倍,即为原来的 3 倍即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。抽样单位数增加 0.5倍,即为原来的 1.5倍。即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165倍。不重复抽样:公式表明:抽样平均误差不仅与总体变异程度、样本容量有关,而且与总体单位数的多少有关。例题一:随机抽选某校学生100人,调查他们的体重。得到他们的平均体重为58公斤,标准差为10公斤。问抽样推断的平均误差是多少?例题二:某厂生产一种新型灯泡共2000只,随机抽出400只作耐用时间试验,测试结果平均使用寿命为4800小时,样本标准差为300小时,求抽样推断的平均误差?例题一解:已知:n=100 x=58 σ=10即:当根据样本学生的平均体重估计全部学生的平均体重时,抽样平均误差为1公斤。例题二解:已知:N=2000 n=400 σ=300 x=4800计算结果表明:根据部分产品推断全部产品的平均使用寿命时,采用不重复抽样比重复抽样的平均误差要小。2.抽样成数的平均误差重复抽样:不重复抽样:例题三:某校随机抽选400名学生,发现戴眼镜的学生有80人。根据样本资料推断全部学生中戴眼镜的学生所占比重时,抽样误差为多大?例题四:一批食品罐头共60000桶,随机抽查300桶,发现有6桶不合格,求合格品率的抽样平均误差?例题三解:已知:则:样本成数即:根据样本资料推断全部学生中戴眼镜的学生所占的比重时,推断的平均误差为2%。例题四解:已知:则:样本合格率计算结果表明:不重复抽样的平均误差小于重复抽样,但是“N”的数值越大,则两种方法计算的抽样平均误差就越接近。抽样极限误差含义:抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围。计算方法:它等于样本指标可允许变动的上限或下限与总体指标之差的绝对值。抽样平均数极限误差:抽样成数极限误差:五.抽样误差的概率度 t抽样误差的概率度是测量抽样估计可靠程度的一个参数。用符号“ t ”表示。公式表示:总体参数的点估计总体参数点估计的特点:P188总体参数优良估计的标准无偏性、一致性、有效性总体参数的区间估计总体参数区间估计的特点:P195抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度(教材P191)符号表示:P( x - X ≤Δ )理论已经证明,在大样本的情况下,抽样平均数的分布接近于正态分布,分布特点是:抽样平均数以总体平均数为中心,两边完全对称分布,即抽样平均数的正误差与负误差的可能性是完全相等的。且抽样平均数愈接近总体平均数,出现的可能性愈大,概率愈大;反之,抽样平均数愈离开总体平均数,出现的可能性愈小,概率愈小,趋于0。(见下图)总体参数区间估计的方法(一)根据给定的抽样误差范围,求概率保......余下全文>>

四:★统计学中抽样成数平均误差的问题

解1 因为通常是用抽样平均数的标准差来衡量抽样差的一般水平的尺度。习题1就是运用了重复抽样条件下的抽样成数的公试计处的抽样平均误差。

2 习题2中明确要求要采用的是不重复抽样的方法抽取的样本,所以应该用不重复抽样条件下的抽样成数的抽样平均误差公式。不重复条件下比重复条件下的的抽样平均误差公式只多了一个修正系数 (1-n/N),也就是答案中的(骇减去200比4000之数(即没有被抽走为样本的百分比)

五:抽样平均误差,抽样极限误差和概率度三者之间有何关系

抽样极限误差指允许存在的误差范围,用△表示,它是由抽样平均误差σ和概率度τ决定的

用公式表示为Δ=στ

而概率度在里面,一般是由置信水平决定,也就是说这个置信水平可以提前给出,由人为决定,常用的置信水平有95%,90%等等,所以概率度τ时常可作为定值的,如此看来,这三者是没有反比关系的

六:抽样平均误差的详解

抽样推断的一般概念抽样推断是在根据随机原则从总体中抽取部分实际数据的基础上,运用数理统计方法,对总体某一现象的数量性作出具有一定可靠程度的估计判断。抽样推断具有这些特点: 它是由部分推算整体的一种认识方法;它是建立在随机取样的基础上。它是运用概率估计的方法;抽样推断的误差可以事先计算并加以控制。抽样推断的主要内容为:参数估计和假设检验 。抽样的基本概念1、全及总体和样本总体全及总体是我们所要研究的对象,而样本总体则是我们所要观察的对象,两者是有区别而又有联系的不同范畴。全及总体又称母体,简称总体,它是指所要认识的,具有某种共同性质的许多单位的集合体。样本总体又称子样,简称样本,是从全及总体中随机抽取出来,代表全及总体的那部分单位的集合体。样本总体的单位数称为样本容量,通常用小写英文字母n来表示。随着样本容量的增大,样本对总体的代表性越来越高,并且当样本单位数足够多时,样本平均数愈接近总体平均数。如果说对于一次抽样调查,全及总体是唯一确定的,那么样本总体就不是这样,样本是不确定的,一个全及总体可能抽出很多个样本总体,样本的个数和样本的容量有关,也和抽样的方法有关。2、全及指标和抽样指标根据全及总体各个单位的标志值或标志属性计算的,反映总体某种属性或特征的综合指示称为全及指标。常用的全及指标有总体平均数(或总体成数)、总体标准差(或总体方差 )。由样本总体各单位标志值计算出来反映样本特征,用来估计全及指标的综合指标称为统计量(抽样指标)。统计量是样本变量的函数,用来估计总体参数,因此与总体参数相对应,统计量有样本平均数(或抽样成数)、样本标准差(或样本方差 )。对于一个问题全及总体是唯一确定的,所以全及指标也是唯一确定的,全及指标也称为参数,它是待估计的数。而统计量则是随机变量,它的取值随样本的不同而发生变化。3、样本容量和样本个数样本容量是指一个样本所包含的单位数。通常将样本单位数不少于30个的样本称为大样本,不及30个的称为小样本。社会经济统计的抽样调查多属于大样本调查。样本个数又称样本可能数目。指从一个总体中可能抽取的样本个数。一个总体有多少样本,则样本统计量就有多少种取值,从而形成该统计量的分布,此分布是抽样推断的基础。4、重复抽样和不重复抽样抽样误差抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。因此,又称为随机误差,它不包括登记误差,也不包括系统性误差。影响抽样误差的因素有:总体各单位标志值的差异程度;样本的单位数;抽样的方法;抽样调查的组织形式。1、抽样平均误差。抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小。平均误差大,说明样本指标对总体指标的代表性低;反之,则高 。2、抽样极限误差。抽样极限则说明样本指标对总体指标的代表性高。其次,平均误差还说明样本指标与总体指标差别的一般范围。这个范围实际上就是抽样极限误差。抽样平均误差的计算:重复抽样:不重复抽样: 误差是指用绝对值形式表示的样本指标与总体指标偏差的可允许的最大范围。它表明被估计的总体指标有希望落在一个以样本指标为基础的可能范围。它是由抽样指标变动可允许的上限或下限与总体指标之差的绝对值求得的。由于总体平均数和总体成数是未知的,它要靠实测的抽样平均数成数来估计。因而抽样极限误差的实际意义是希望总体平均数落在抽样平均数的范围内,总体成数落在抽样成数的范围内。基于理论上的要求,抽样极限误差需要用抽样平均误差 或 为标准单位来衡量。即把极限误差 △x或 △p相应除以 或 ,得出相对的误差程度t倍,t称为......余下全文>>

扫一扫手机访问

发表评论