一:大体积混凝土的温度控制措施有哪些
1.选用中低热的水泥品种,充分利用商品混凝土的后期强度
商品混凝土温度升高和变动的主要原因在于商品混凝土浇筑中水泥水化热的存在,在施工中应选用水化热较低的水泥作为主要的施工材料,这样能够降低由于水泥水化热引起的温度变更措施。为此,在大体积商品混凝土施工的过程中一般都采用矿渣硅酸盐水泥作为主要的施工材料。
2.掺加外加剂
为了满足送到现场的商品混凝土具有一定坍落度,如果在施工的过程中单纯的增加水泥的用量,不仅仅使得水泥使用成本增加,更是增加了商品混凝土的收缩时间,从而增加了水泥水化热温度。这样子更容易引起水泥温度裂缝的产生,因此选择适当的外加剂是保证水泥质量的基础。木质素磺酸钙属阴离子表面活性剂,对水泥颗粒有明显的分散效应,并能使水的表面张力降低而引起加气作用。因此,在商品混凝土中掺入水泥重量0.25%的木钙减水剂(即木质素磺酸钙),它不仅能使商品混凝土和易性有明显的改善,同时又减少了10%左右的拌和水,节约10%左右的水泥,从而降低了水化热。
目前,有一种新型“减低收缩剂”,常用的有UEA、AEA,是掺入后可使砼空隙中水分表面张力下降,从而减少收缩的新材料,它可减少收缩40%~60%,但是能否起到有效地控制收缩裂缝的作用,还应注重其条件和后期收缩。试验资料表明,在商品混凝土内掺入一定数量的粉煤灰,由于粉煤灰具有一定活性,不但可代替部分水泥,而且粉煤灰颗粒呈球形,具有“滚珠效应”而起润滑作用,能改善商品混凝土的黏塑性,并可增加泵送商品混凝土(大体积商品混凝土多用泵送施工)要求的0.315 mm以下细粒的含量,改善商品混凝土可泵性,降低商品混凝土水化热。另外,根据大体积商品混凝土的强度特性,初期处于高温条件下,强度增长较快、较高,但后期强度就增长缓慢,这是由于高温条件下水化作用迅速,随着商品混凝土的龄期增长,水化作用慢慢停止的缘故。掺加粉煤灰后可改善商品混凝土的后期强度,但其早期抗拉强度及早期极限拉伸值均有少量降低。
3.粗细骨料选择
为了达到预定的要求,同时又要发挥水泥最有效的作用,粗骨料应达到最佳的最大粒径。对于土建工程的大体积钢筋商品混凝土,粗骨料的规格往往与结构物的配筋间距、模板形状以及商品混凝土浇筑工艺等因素有关,宜优先采用以自然连续级配的粗骨料配制商品混凝土。因为用连续级配粗骨料配制的混凝上具有较好的和易性、较少的用水量和水泥用量以及较高的抗压强度。在石子规格上可根据施工条件,尽量选用粒径较大、级配良好的石子。因为增大骨料粒径,可减少用水量,而使商品混凝土的收缩和泌水随之减少。同时亦可减少水泥用量,从而使水泥水化热减小,最终降低商品混凝土的温升。当骨料粒径增大后,容易引起商品混凝土的离析,因此必须优化级配设计,施工时加强搅拌、浇筑和振捣工作。
根据有关试验结果表明,采用5 mm~25 mm石子,1 m3商品混凝土可减少用水量15 kg左右,在相同水灰比的情况下,水泥用量可减少20 kg左右。粗骨料颗粒的形状对混凝上的和易性和用水量也有较大的影响。因此,粗骨料中的针、片状颗粒按重量计应不大于15%,细骨料以采用中、粗砂为宜。根据有关试验资料表明,当采用细度模数为2.79、平均粒径为0.38的中、粗砂,它比采用细度模数为2.12、平均粒径为0.336的细砂,1 m3商品混凝土可减少用水量20 kg~2 kg,水泥用量可相应减少28 kg~35 kg。这样就降低了商品混凝土的温升和减小了商品混凝土的收缩。泵送混凝上的输送管道除直管外,还有锥形管、弯管和软管等。当商品混凝土通过锥形管和弯管时,商品混凝土颗粒间的......余下全文>>
二:关于水利水电工程大体积混凝土定义与降温控温措施
大体积混凝土降温措施有以下这些:
1、在选择水泥原料的时候,应尽量优先选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥或低强度水泥拌制混凝土。
2、采用改善骨料级配,砂选用中粗砂,含泥量小于3%,清除泥土和石粉,级配要好,从而可能提高混凝土自身的强度,相对可以减少水泥用量,对克服温度裂缝有好处。
3、采用冰水配制混凝土或混凝土搅拌站厂址配置有深水井,采用冰凉的井水配制,粗细骨料均搭设遮阳棚,避免日光曝晒,用水将碎石冷却以降低混凝土的浇筑温度。
4、在保证混凝土强度及坍落度要求的前提下,使用适当的缓凝减水剂,减少水泥用量、降低水灰比,以减小水化热。
5、掺加外加剂可使混凝土密实性、和易性好,表面易摸平,形成微膜。可有效地改善水泥浆与骨料的粘结力,提高混凝土抗裂性能、抗碳化性,减少混凝土泌水、水分蒸发、干燥收缩、碳化收缩、沉缩变形。
6、减小混凝土浇注的分层厚度,在条件允许时减缓混凝土浇注速度,以不出现冷缝为原则。热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热。
7、在混凝土增加预留孔降温,浇注完毕养护时期,预留孔内通入冷却水,养护水由于水泥水化热而造成温度升高,每隔2-3小时孔内换一次水,孔内热水沿管内流下,既可以降低混凝土内部的温度,减少混凝土内约束作用。
8、混凝土初凝后,上表面立即覆盖保温材料(如泡沫海棉、养护液、草袋、锯木、湿砂等)并浇水养护,不宜浇水过多,保持混凝土的湿润即可。厚板 侧面及底面采用保留模板的方法养护,在寒冷季节采取外包塑料薄膜和干草袋的方法保温措施。规定合理的拆模时间,在缓慢的散热过程中,以控制混凝土的内外温 差小于20℃,以免混凝土表面发生急剧的温度梯度,使混凝土获得必要的强度。
三:如何开展大体积混凝土的温控措施
大体积混凝土降温措施有以下这些:1、在选择水泥原料的时候,应尽量优先选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥或低强度水泥拌制混凝土。
四:大体积砼施工温度控制有哪些措施?
用低热水泥。掺加外加剂,如减水鼎。利用60~90天龄期(配合比上动脑筋)
骨料预冷却。冷水拌制。混凝土运输过程中,保温隔热。(生产,加工上动脑筋)
养护,冷却水管,覆盖保温。(混凝土养护中,动脑筋)
基本就是这些了。
五:试简述大体积混泥土的控温措施有哪些
混凝土在现代工程建设中占有重要地位。而在今天,混凝土的裂缝较为普遍,在桥梁工程中裂缝几乎无所不在。尽管我们在施工中采取各种措施,小心谨慎,但裂缝仍然时有出现。究其原因,我们对混凝土温度应力的变化注意不够是其中之一。 在大体积混凝土中,温度应力及温度控制具有重要意义。这主要是由于两方面的原因。首先,在施工中混凝土常常出现温度裂缝,影响到结构的整体性和耐久性。其次,在运转过程中,温度变化对结构的应力状态具有显著的不容忽视的影响。我们遇到的主要是施工中的温度裂缝,因此本文仅对施工中混凝土裂缝的成因和处理措施做一探讨。 1 裂缝的原因 混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等。 混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6~1.0)×104, 长期加荷时的极限位伸变形也只有(1.2~2.0)×104.由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。一般设计中均要求不出现拉应力或者只出现很小的拉应力。但是在施工中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。 2 温度应力的分析 根据温度应力的形成过程可分为以下三个阶段: (1)早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。这个阶段的两个特征,一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。由于弹性模量的变化,这一时期在混凝土内形成残余应力。 (2)中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中,温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形成的残余应力相叠加,在此期间混凝上的弹性模量变化不大。 (3)晚期:混凝土完全冷却以后的运转时期。温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。 根据温度应力引起的原因可分为两类: (1)自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。例如,桥梁墩身,结构尺寸相对较大,混凝土冷却时表面温度低,内部温度高,在表面出现拉应力,在中间出现压应力。 (2)约束应力:结构的全部或部分边界受到外界的约束,不能自由变形而引起的应力。如箱梁顶板混凝土和护栏混凝土。 这两种温度应力往往和混凝土的干缩所引起的应力共同作用。 要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。在大多数情况下,需要依靠模型试验或数值计算。混凝土的徐变使温度应力有相当......余下全文>>
六:水工大体积混凝土温控措施有哪些
水工大体积混凝土温控措施有两种方法:
一种是降温法,即在砼浇筑成型后,通过循环冷却水降温,从结构物的内部进行温度控制;
另一种是保温法,即砼浇筑成型后,通过保温材料、碘钨灯或定时喷浇热水、蓄存热水等办法,提高砼表面及四周散热面的温度,从结构物的外部进行温度控制。保温法基本原理是利用砼的初始温度加上水泥水化热的温升,在缓慢的散热过程中(通过人为控制),使砼获得必要的强度。
混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土,称之为大体积混凝土。
现代建筑中时常涉及到大体积混凝土施工,如高层楼房基础、大型设备基础、水利大坝等。它主要的特点就是体积大,一般实体最小尺寸大于或等于1m.它的表面系数比较小,水泥水化热释放比较集中,内部升温比较快。混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。所以必须从根本上分析它,来保证施工的质量。
七:大体积混凝土的定义?及施工温控技术措施?
中国:一般为一次浇筑量大于1000 m3或混凝土结构实体最小尺寸等于或大于2 m,且混凝土浇筑需研究温度控制措施的混凝土。
日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与川界气温之差预计超过25℃的混凝土,称为大体积混凝土”。
八:防止混凝土开裂的方法以"抗放兼施"为主导的大体积混凝土温控措施。中的抗放兼施什么意思啊?
“抗放兼施”的抗裂原理,通过对大面积混凝土结构采用增加构配筋和“跳仓浇筑”的施工方法, 从而有效地控制了大面积混凝土结构工程中有害裂缝的出现,达到预期抗裂效果,保证施工质量。
九:大体积混凝土温控指标宜符合哪些规定
大体积混凝土工程温控指标宜应符合哪些规定:
1、混凝土浇筑体在入模温度基础上的温升值不宜大于50℃。
2、混凝土浇筑块体的里表温差(不含混凝土收缩的当量温度)不宜大于25℃。
3、混凝土浇筑体的降温速率不宜大于2.0℃/d。
4、混凝土浇筑体表面与大气温差不宜大于20℃。
5、大体积混凝土施工前,应做好各项施工前准备工作,并与当地气象台、站联系,掌握近期气象情况。必要时,应增添相应的技术措施,在冬期施工时,尚应符合国家现行有关混凝土冬期施工的标准。