一:数学建模关于建立单污染源空气污染扩散模型的问题,求教大神!
clear all
[x,y]=meshgrid(-51000:100:51000,-51000:100:51000);
Q=135.64; z=1.5; H=50; u=1.94;
sigy=0.3914238*x.^0.865014;
sigz=0.0757182*x.^1.00770;
%c=@(x,y)Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+eps).^2)));
c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+eps).^2)));
%g=dblquad(c,-51000,51000,-51000,51000,100),
%g=abs(g/51000/51000*1000),
mesh(x,y,c);
xlabel('X'),ylabel('Y'),zlabel('C'),
clear all
clc
[x,y]=meshgrid(-51000:100:51000,-51000:100:51000);
Q=1836.7; z=1.5; H=50; u=1.7;
sigy=0.3914238*x.^0.865014;
sigz=0.0757182*x.^1.00770;
c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+eps).^2)));
mesh(x,y,c);
xlabel('X'),ylabel('Y'),zlabel('C'),
clear all
[x,y]=meshgrid(-51000:100:51000,-51000:100:51000);
Q=1836.7; z=1.5; H=50; u=1.7;
sigy=0.3914238*x.^0.865014;
sigz=0.0757182*x.^1.00770;
c=@(x,y)Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+eps).^2)));
%mesh(x,y,c);
%xlabel('X'),ylabel('Y'),zlabel('C'),
g=dblquad(c,-51000,51000,-51000,51000,100),
g=abs(g/51000/51000*1000),...余下全文>>
二:2015年数学建模大赛B题 空气污染问题研究 100分
统计结果显示,PM2.5(细颗粒物)是京津冀地区首要空气污染物。PM2.5主要来源于机动车尾气、燃煤、工业污染等
三:fluent开启组分输运方程水在空气中的扩散系数怎么设置
扩散系数——表示气体(或固体)扩散程度的物理量。扩散系数是指当浓度梯度为一个单位时,单位时间内通过单位面积的气体量,
在气体中,如果相距1厘米(或者每米)的两部分,其密度相差为1克每立方厘米(或者每米),则在1秒内通过1平方厘米(或者平方米)面积上的气体质量,规定为气体的扩散系数。单位:cm2/S或者m2/s
四:核电站泄漏的核燃料在土壤中的扩散过程是否与其在空气中的扩散过程类似?能不能用相似的模型解决呢?
不能类比。空气中乱流较多,也即湍流,扩散过程中不仅有户子扩散,也有对流扩散,扩散较快。而在土壤中主要以分子扩散为主,速度较慢。两者在激励上有些区别,所以不能用相同的模型来解决。你要真真计算,看《传递过程》,Bird的第三版出来几年了。
五:什么是颗粒内组分的有效扩散系数
答
色谱法(chromatography)又称色谱分析、色谱分析法、层析法,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。
色谱法基本原理是指在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动,故称涡流扩散。
1.涡流扩散项 A
在填充色谱柱中,当组分随流动相向柱出口迁移时,流动相由于受到固定相颗粒障碍,不断改变流动方向,使组分分子在前进中形成紊乱的类似涡流的流动,故称涡流扩散。
由于填充物颗粒大小的不同及填充物的不均匀性,使组分在色谱
柱中路径长短不一,因而同时进色谱柱的相同组分到达柱口时间并
不一致,引起了色谱峰的变宽。色谱峰变宽的程度由下式决定:
A = 2λdp
上式表明,A与填充物的平均直径dp的大小和填充不规则因子λ有关,与流动相的性质、线速度和组分性质无关。为了减少涡流扩散,提高柱效,使用细而均匀的颗粒,并且填充均匀是十分必要的。对于空心毛细管,不存在涡流扩散。因此 A = 0。
2. 分子扩散项 B / u (纵向扩散项)
纵向分子扩散是由浓度梯度造成的。组分从柱入口加入,其浓度分布的构型呈“塞子”状。它随着流动相向前推进,由于存在浓度梯度,“塞子”必然自发的向前和向后扩散,造成谱带展宽。分子扩散项系数为 B = 2γ Dg
γ是填充柱内流动相扩散路径弯曲的因素,也称弯曲因子,它反映了固定相颗粒的几何形状对自由分子扩散的阻碍情况。
Dg为组分在流动相中扩散系数(cm3·s-1),分子扩散项与组分在流动相中扩散系数Dg成正比.
Dg与流动相及组分性质有关:
(a) 相对分子质量大的组分Dg小,Dg反比于流动相相对分子质量的平方根,所以采用相对分子质量较大的流动相,可使B项降低;
(b) Dg随柱温增高而增加,但反比于柱压。
另外纵向扩散与组分在色谱柱内停留时间有关,流动相流速小,组分停留时间长,纵向扩散就大。因此为降低纵向扩散影响,要加大流动相速度。对于液相色谱,组分在流动相中纵向扩散可以忽略。
3. 传质阻力项 Cu
由于气相色谱以气体为流动相,液相色谱以液体为流动相,它们的传质过程不完全相同。
(1)气液色谱
传质阻力系数C包括气相传质阻力系数Cg和液相传质阻力系数C1两项,即
C = Cg+ C1
气相传质过程是指试样组分从气相移动到固定相表面的过程。这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。有的分子还来不及进入两相界面,
就被气相带走;有的则进入两相界面又来不及返回气相。这样使得试样在两相界面上不能瞬间达到分配平衡,引起滞后现象,从而使色谱峰变宽。对于填充柱,气相传质阻力系数Cg为:
Cg= 0.01k2 / (1 + k)2 · dp / Dg
式中k为容量因子。由上式看出,气相传质阻力与填充物粒度dp的平方成正比,与组分在载气流中的扩散系数Dg成反比。因此,采用粒度小的填充物和相对分子质量小的气体(如氢气)做载气,可使Cg减小,提高柱效。
液相传质过程是指试样组分从固定相的气/液界面移动到液相内部,并发生质量交换,达到分配平衡,然后又返回气/液界面的传质过程。这个过程也需要一定的时间,此时,气相中组分的......余下全文>>
六:扩散的科学术语
扩散(diffusion):物质分子从高浓度区域向低浓度区域转移,直到均匀分布的现象。扩散的速率与物质的浓度梯度成正比。由于分子(原子等)的热运动而产生的物质迁移现象.一般可发生在一种或几种物质于同一物态或不同物态之间,由不同区域之间的浓度差或温度差所引起,前者居多.一般从浓度较高的区域向较低的区域进行扩散,直到同一物态内各部分各种物质的浓度达到均匀或两种物态间各种物质的浓度达到平衡为止.显然,由于分子的热运动,这种“均匀”、“平衡”都属于“动态平衡”,即在同一时间内,界面两侧交换的粒子数相等,如红棕色的二氧化氮气在静止的空气中的散播,蓝色的硫酸铜溶液与静止的水相互渗入,钢制零件表面的渗碳以及使纯净半导体材料成为N型或P型半导体掺杂工艺等等都是扩散现象的具体体现;在电学中半导体PN结的形成过程中,自由电子和空穴的扩散运动是基本依据.扩散速度在气体中最大,液体中其次,固体中最小,而且浓度差越大、温度越高、参与的粒子质量越小,扩散速度也越大。扩散过程,是分子挣脱彼此间分子引力的过程,这个过程,分子需要能量来转化为动能,也就需要从外界吸收热量。晶体学中,扩散是物质内质点运动的基本方式,当温度高于绝对零度时,任何物系内的质点都在作热运动。当物质内有梯度(化学位、浓度、应力梯度等)存在时,由于热运动而导致质点定向迁移即所谓的扩散。因此,扩散是一种传质过程,宏观上表现出物质的定向迁移。在气体和液体中,物质的传递方式除扩散外还可以通过对流等方式进行;在固体中,扩散往往是物质传递的唯一方式。扩散的本质是质点的无规则运动。晶体中缺陷的产生与复合就是一种宏观上无质点定向迁移的无序扩散。晶体结构的主要特征是其原子或离子的规则排列。然而实际晶体中原子或离子的排列总是或多或少地偏离了严格的周期性。在热起伏的过程中,晶体的某些原子或离子由于振动剧烈而脱离格点进入晶格中的间隙位置或晶体表面,同时在晶体内部留下空位。显然,这些处于间隙位置上的原子或原格点上留下来的空位并不会永久固定下来,它们将可以从热涨落的过程中重新获取能量,在晶体结构中不断地改变位置而出现由一处向另一处的无规则迁移运动。在日常生活和生产过程中遇到的大气污染、液体渗漏、氧气罐泄漏等现象,则是有梯度存在情况下,气体在气体介质、液体在固体介质中以及气体在固体介质中的定向迁移即扩散过程。由此可见,扩散现象是普遍存在的。晶体中原子或离子的扩散是固态传质和反应的基础。无机材料制备和使用中很多重要的物理化学过程,如半导体的掺杂、固溶体的形成、金属材料的涂搪或与陶瓷和玻璃材料的封接、耐火材料的侵蚀等都与扩散密切相关,受到扩散过程的控制。通过扩散的研究可以对这些过程进行定量或半定量的计算以及理论分析。无机材料的高温动力学过程——相变、固相反应、烧结等进行的速度与进程亦取决于扩散进行的快慢。并且,无机材料的很多性质,如导电性、导热性等亦直接取决于微观带电粒子或载流子在外场——电场或温度场作用下的迁移行为。因此,研究扩散现象及扩散动力学规律,不仅可以从理论上了解和分析固体的结构、原子的结合状态以及固态相变的机理;而且可以对无机材料制备、加工及应用中的许多动力学过程进行有效控制,具有重要的理论及实际意义。 主动自力生物扩散包括主动(自力)和被动(借外力)两类。缺乏行动能力的微生物和植物大多靠被动传布〔见传播(植物)〕,动物则多行主动扩散。主动扩散 生物的生存繁衍需要空间、食物和配偶等条件。生物个体过于稠密时,对空间的需要不易满足,食源不足及环境恶化会限制种群的发展。与植物相比,动物具有主动寻找生存空间、食源和躲避危险的能力。动物的......余下全文>>
七:关于红茶
茶的分类法
茶的分类,按各种不同标准,可有不同的区分法。然最一般也最常使用的,是依发酵度与制法,分为六大茶类。而红茶,便是这六大茶类中的一种。认识六大茶类,便相对初步认识了红茶:
绿茶:制作时不经过任何发酵过程、采摘后直接杀菁、揉捻、干燥而成的茶。滋味清新鲜醇,清爽宜人。因工法不同,又可分为以锅炒而成的炒菁绿茶,比方龙井、碧螺春,以及以高温蒸汽蒸煮的蒸菁绿茶,比方日本的煎茶、玉露,前者香气浓、后者有新鲜新绿感。
黄茶:制作方式近似绿茶,但过程中经过闷黄,使茶叶与茶汤的颜色呈黄的微发酵的茶,发酵度约10~20%,滋味清香甘甜,如君山银针、蒙顶黄牙等都是知名的茶款。
白茶:把叶片采摘下来后只经过轻微的、约10~30%程度的发酵、不经过任何炒菁或揉捻动作,便直接晒干或烘干的轻发酵茶。带有细致的茸毛,滋味清淡爽滑,非常独特。特产于中国福建一带,如白毫银针、寿眉牡丹等都是知名的茶款。
青茶:又称乌龙茶。发酵度约为20~60%,是介于绿茶与红茶之间的半发酵茶类。滋味变化多端,兼容绿茶的清绿新爽与红茶的醇厚甘美,常带有如花香、果香、谷香等多元丰富的香气,是台湾最知名的茶类。知名茶款除乌龙外还有包种、铁观音、水仙、武夷茶。
红茶:发酵度达80~90%的全发酵茶。制作过程不经杀菁,而是直接萎凋、揉切,然后进行完整发酵,使茶叶中所含的茶多酚氧化成为茶红素,因而形成红茶所特有暗红色茶叶、红色茶汤。(然必须注意的是,在英文中,红茶并不称「红」茶,而称black tea)
黑茶:属后发酵茶。制造上是在杀菁、揉捻、晒干后,再经过堆积存放的过程(称为「渥堆」),使之产生再次发酵,故而茶叶与茶汤颜色更深、滋味也更浓郁厚实。如普洱茶、湖南黑茶等都是着名茶款。
红茶的制作
认识了茶的分类,我们可以进一步,探究红茶的制作过程:
采摘:茶是以从茶树上与采摘下来的嫩叶与芽所制成。一般而言,高品质的红茶通常采摘一芽二叶到三叶,且叶片的老嫩程度需一致。
萎凋:将采摘下来的叶子,在室内均匀摊放开来静置一段时间,使茶叶的水分缓慢挥发减少,变为柔软而容易揉捻,同时茶叶也会在也在水分散失的过程中逐步产生化学变化。
揉捻与切碎:将萎凋后的的茶叶以手工或机器方式加以揉搓揉制,一方面破坏茶叶的组织,使内含的茶汁与茶的内质和芳香释出于茶叶的表层,以能在未来冲泡时可以迅速溶解出来;一方面使茶叶紧卷成型,以利包装与保存。而茶叶揉捻的方式与轻重的不同,也会形成风味上的不同差异。
如果是切碎型的红茶(现在可见的、除中国的功夫红茶、小种红茶外,大部分红茶均属之),则在此过程中以机器同时进行切碎的动作。
发酵:将揉切好的茶叶铺开来,在湿润的空气中摊放约数个小时进行发酵,使茶叶在空气中氧化,红茶的色泽与香气在此步骤完整形成。
干燥:将发酵完成的茶叶高温烘干,以停止发酵作用并去除水分。之后便可以进行筛选、拼配、包装上市了。