一:通信电源系统监控模块功能有哪些
监控模块、整流模块、交直流监测模块这些是必配模块,还有很多选配模块,具体看个人对华自直流屏要求。
二:电源模块的分类
按现代电力电子的应用领域,我们把电源模块划分如下: 高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源模块技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。计算机技术的发展,提出绿色电脑和绿色电源模块。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目 前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。当前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,当前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。 不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lVA、2kVA、3kVA等多种规格的产品。 变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大......余下全文>>
三:通信电源模块安装,调试套用什么定额?
1、电源模块安装套用TSD3-060和TSD3-061两个定额子目,分别是安装高频开关整流模块,50A以下和50A以上。该定额子目适用于扩容工程。
2、安装逆变器套用TSD3-046~TSD3-053定额子目(安装调试交流不间断电源),具体套用哪个,看逆变器的功率多大。见该定额子目的页下注释:安装逆变器套用此部分定额子目。
还有不明白的地方可以追问或向我发起新的提问。
四:通信机房设备为什么要用-48V电压的电源?
)在通信局站供电系统方面,我国早已完成了以直流-48V为基础电压的供电系统的统一工作,原有-60V的供电系统已被淘汰,长途干线光缆局-24V和+24V系统已被改造或统一成-48V供电。
2)回顾电信行业的发展历程,我们可以清晰地看到随着电信行业重要性的不断提升,其对供电系统的要求越来越高。因此,机房钉源环境得到了不断完善,包括单项产品的技术进步以及多种产品整合促成的供电方案的改进。这些变化都是基于电信企业对其供电环境品质的一贯追求,那就是供电系统的高可靠性,高效能使用,以及低运营成本的宗旨。应该说这一追求首先体现在其直流供电系统的不断改进与完善,从早期的相控电源开始到模块化开关电源的引入,直到今天,电信的直流电源已经成为一个成熟的专业化电源方案,具有高度的可靠性与和管理性,并形成了比较规范的行业标准。
3)通信-48V直流电源技术已经非常成熟,它是一种模块化的设备,并直接使用蓄电池组作为后备电源,一般后备工作时间在数小时以上,远比交流后备时间长。具有工作可靠、维护方便的特点。这种供电方式经过了数十年的实际运行,证明是安全有效、切实可行的,最适合电信大网的应用需求。
4)从电源安全供电角度来说,由于本质的区别,交流电源系统与直流电源系统比较,其安全系数要低得多。交流电源系统方面,虽然就单个设备而言,通过冗余技术可以使其UPS设备本身的可靠性大为提高,但就整个交流供电系统而言,有很多不可备份的系统单点故障点,比如逆变器、同步并机板、静态开关、输出开关,这些单点故障点的故障,都可能导致整个通信系统掉电瘫痪。
5)以INTELEC 1998年发表的《一种新生的技术—— -48V计算机设备供电拓扑》一文为代表,由瑞典TELIA公司执笔编写,他们认为:-48V供电是最可靠、安全和经济的方案;主张互联网和数据设备的用户以购买和安装直流电设备作为首选方案;采用以DC/DC变换这种更有效和简单的解决方法,而不采用逆变器方案。文章进一步分析直流-48V和UPS供电系统的安全使用和可靠性指标,最终认为-48V供电系统是统一供电的最佳方案。
6)任何信息技术设备,其最终任意电路板芯片都是工作于低压直流电,如±12V、±5V、±3V和±1.1V等。因此,理论上直流电源供电系统的效率比交流电源供电系统要高。
7)直流电源对于通信精密电子设备干扰小,具有良好的电磁兼容性,有利于系统的稳定、安全运行。
8)为了适用各种不同的供电环境,服务器制造厂家都可以提供交流式和直流式电源模块的IT设备,不过市场首选的往往是交流电源模块,而直流模块作为可选件,仅在用户提出时才配给,因此不为大家熟悉。经了解几乎所有的著名服务器、路由器制造厂家都能提供直流式服务器、路由器等设备。
通信机房供电模式采用-48V直流供电系统,所有设备统一使用现成-48V直流电源供电,这种供电系统是最安全、最可靠、最经济、最合理的方案。
五:开关电源与模块电源的区别
模块电源是可以直接贴装在印刷电路板上的电源供应器,其特点是可为专用集成电路(ASIC)、数字信号处理器 (DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点 (POL) 电源供应系统或使用点电源供应系统 (PUPS)。由于模块式结构的优点甚多,因此模块电源广泛用于交换设备、接入设备、移动通讯、微波通讯以及光传输、路由器等通信领域和汽车电子、航空航天等。
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热等领域。
二者不能通用
参考资料:gzyouke.cn.alibaba.com/
六:通信开关电源有哪些模块组成,此电源如何实现稳压的
你好!把具体电路发出来呀
七:通信电源整流模块使用高频开关整流器主要原因是什么
主要是由于高频开关整流器工作效率高
八:有谁知道这个电源怎么改可调电压电流吗?艾默生R48-3200通信电源模块铁壳可改调压调流吗?
我只知道要通过监控模块调节输出电压和限流点,如果没有监控模块,整流模块就会按照默认的53.5V,额定电流(如50A)输出。
九:通信电源 -48V
着是个国际标准.主要是通讯设备都是直流设备需电压不高但点流大,这样说较为简单如要真正的清楚还是看看通讯电源发展史。
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。
关键字:电力电子;电源
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具 体应用。
当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。
1. 电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1 整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2 逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3 变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路珐术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2. 现代电力电子的......余下全文>>
十:请教台达DPR48/50-B-DCE(ESR-48/50C F)48V50A通讯电源模块的并联使用以及如何调节输出电压 50分
我找这个模块的资料找了好几天了,最后找到的资料如下:
此外,我手上有一块接口板,照片如下:
按从左向右(第二张图是从上向下)的顺序,左边三个金属接插件应该是220V-L,220V-N,地,右边7个应该是-48V,-48V,-48V,-48V,0V,0V,0V。当然,你最好实测一下。
此外,引用网上的一段话,仅供参考:通信电源分在线监控,和非在线监控两种,一般现在基本没有区分了,基本是做设定工作于那个模式就行了。一般的情况下,通信电源还分基站电源和机房电源,但是,你这个一定不会是机房电源,太小了,而且,能够工作于非在线监控下模式。机房的电源功率比较大一般有10Kw以上,你要知道机房里面的电池组有多大!所以,机房电源也比较大,而且要求能够多电源并联合冗余工作。也就是会有10多个电源并联工作以便提供更大的电流(15Kw以上的开关电源价格就太贵了,而且,不安全)或设备冗余安全备份,那么为了协调和监管电源,这些种类的电源都有数据口和管理服务器或电源管理服务系统连接。由这些独立的服务器或服务器集群统一调配,不允许独立单独非值守工作,以便监控管理这些机房里的电源设备,你这个电源应该是基站或模块局电源属于无人值守机房使用的,但是工作非在监控状态下,你这个问题是设定在在非在线监控状态下,当没有接上电池或电池损坏就会报警并停机。你的这个电源我不熟悉,按说你的报警提示就是电池未接或者电池损坏或风扇故障。非监控状态下的工作过程式这样的,上电后,电源采集自身的设定模式并检测温度,如果是非监控状态下的模式就接着检测设备性能,那么就是电源开始启动,风扇会高速转动一秒(也有的不这样,他会按现行设备温度控制转速)这个是检测风扇是否故障,同时如果测试到在预定的时间里电源电压能够升至42V并且电流不大于设定的最大充电值。(这个过程为检测电源是否可以带负载和电池组是否有短路)。然后,那么电压会继续升高至53V,如果电压达到53V电流为0或小于某个设定值,那么就会停机因为电源一直检测不到电流,判断为没有接入电池或连接断路,为了安全和能耗控制,就自己关断电源运行,直至情况消失。如果是工作于监控模式下那就是另外一个检测和工作过程。如果感兴趣的话,我再继续回帖。怕说多了乱。,还有楼主说的开机信号是不准确的,短接某个脚启动那是用于测试的强制模式。但是,一般会有专用接口插上去,用于紧急处理一些问题的。