一:中考关于圆的知识点汇总
24.1 圆
24.1.1 圆
•连接圆上任意两点的线段叫做弦。圆上任意两点之间的部分叫做圆弧,简称弧。
24.1.2 垂直于弦的直径
•垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦的直径垂直于弦且平分弦所对的两条弧。
24.1.3 弧、弦、圆心角
1、顶点在圆心的角叫做圆心角。
2、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
推论1:相等的弧所对的弦相等,所对的圆心角也相等。
推论2:相等的弦所对的弧相等,所对的圆心角也相等。
24.1.4 圆周角
1、顶点在圆上,且两边都与圆相交的角叫做圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,且都等于这条弧所对的圆心角的一半。
推论1:在同圆或等圆中,如果两个圆周角相等,那么它们所搐的弧也一定相等。
推论2:半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
3、如果一个多边形的所有顶点都在同一个圆上,那么这个多边形就叫做圆内接多边形,这个圆就叫做多边形的外接圆。
4、圆内接四边形的对角互补。
24.2 点、直线、圆和圆的位置关系
24.2.1 点和圆的位置关系
1、若⊙O的半径为r,点P到圆心的距离为d,则有:
点P在圆外 <=> d>r;点P在圆上 <=> d=r;点P在圆内 <=> d (“<=>”读作“等价于”,表示可以从符号“<=>”的一端得到另一端) 2、经过已知的两个点的圆的圆心在这两个点的连线段的垂直平分线上。 3、不在同一直线上的三个点确定一个圆,确定方法:作三点的连线段的其中两条的垂直平分线,交点即为圆心,以圆心到其中一点的距离作为半径画圆即可。 4、若三角形的三个顶点在同一个圆上,那么这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做三角形的外心。 5、假设命题的结论不成立,经过推理得出矛盾,则假设不正确,故原命题成立,这种证明方法叫做反证法。 24.2.2 直线和圆的位置关系 1、当直线与圆有两个公共点时,叫做这条直线与圆相交,这条直线叫做圆的割线。 当有一个公共点时,叫做直线与圆相切,这条直线叫做圆的切线,这个点叫做切点。 当没有公共点时,叫做直线与圆相离。 2、若⊙O的半径为r,直线l到圆心的距离为d,则有: 直线l与圆相交 <=> d 3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线就是圆的切线。 切线的性质定理:圆的切线垂直于过切点的半径。 4、经过圆外一点作圆的切线,这个点到切点的长度叫做这点到圆的切线长。 5、切线长定理:从圆外一点可以引出两条切线,它们的切线长相等,这个点与圆心的连线平分两条切线的夹角。 6、与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条边的角平分线的交点,叫做三角形的内心。确定内切圆方法:作出角平分线,以交点为圆心,以它到任意一边的距离为半径作圆即可。 24.2.3 圆和圆的位置关系 (1-3条内容见最下面的图片) 1、如果两个圆没有公共点,就叫做这两个圆相离(如(1)(5)(6))。 其中(1)叫做外离,(5)(6)叫做内含,(6)中两圆同心是内含的一种特殊情形。 2、如果两个圆只有一个公共点,就叫做这两个圆相切(如(2)(4))。 其中(2)叫做外切,(4......余下全文>> 杨本是寿王之妻。 成为所谓红颜祸水,更多无非是后人强加,她区区女子,即使受宠万分,根本不敢有任何想法去颠覆一个王朝。 “谓杨国忠为贵妃堂兄,堂兄有罪,堂妹亦难免,贵妃亦被缢死于路祠。安史治乱与杨贵妃无关,她成了唐玄宗的替罪羔羊。? 她是杨国忠的替罪羊。 甚至于上古千年来诸多的“红颜祸水”无非是后世为男子开脱而造,古代女子的地位低下,总是归罪于女子! 参考资料:www.greatchinese.net/famous/lady/yangguifei.htm二:评价杨贵妃吧?