纠错编码的应用

一:纠错编码技术有多少种

非常多种,按照不同的分类。所谓比较有名的比如 汉明码、BCH码、LDPC码等都是特例。按照不同的角度可以有很多分类。不知道你想从哪个角度进行分类

二:信道编码的纠错码的各种类型

卷积码非常适用于纠正随机错误,但是,解码算法本身的特性却是:如果在解码过程中发生错误,解码器可能会导致突发性错误。为此在卷积码的上部采用RS码块,RS码适用于检测和校正那些由解码器产生的突发性错误。所以卷积码和RS码结合在一起可以起到相互补偿的作用。卷积码分为两种:(1)基本卷积码:基本卷积码编码效率为,η=1/2,编码效率较低,优点是纠错能力强。(2)收缩卷积码如果传输信道质量较好,为提高编码效率,可以采样收缩截短卷积码。有编码效率为:η=1/2、2/3、3/4、5/6、7/8这几种编码效率的收缩卷积码。编码效率高,一定带宽内可传输的有效比特率增大,但纠错能力越减弱。 1993年诞生的Turbo码,单片Turbo码的编码/解码器,运行速率达40Mb/s。该芯片集成了一个32×32交织器,其性能和传统的RS外码和卷积内码的级联一样好。所以Turbo码是一种先进的信道编码技术,由于其不需要进行两次编码,所以其编码效率比传统的RS+卷积码要好。3.4GSM系统中的信道编码GSM系统把20ms语音编码后的数据作为一帧,共260bit,分成50个最重要比特、132个次重要比特和78个不重要比特。在GSM系统中,对话音编码后的数据既进行检错编码又进行纠错编码。如图5所示。首先对50个最重要比特进行循环冗余编码(CRC),编码后为53bit;再将该53bit与次重要的132bit一起进行约束长度为K=5,编码效率为R=1/2的卷积编码,编码后为2(53+132+4)=378bit;最后再加上最不重要的78bit,形成信道编码后的一帧共456bit。3.5IS-95系统中的信道编码(1)正向链路上的信道编码在IS-95系统中,正向链路上是以不同的沃尔什(Walsh)函数来区分不同的物理信道的。在用沃尔什函数进行直接扩频调制之前,要对话音数据或信令数据进行编码效率R=1/2、约束长度为K=9的信道编码。由于CDMA系统是受自身干扰的系统,各业务信道上的发射功率受到严格的限制。当系统中使用同一频率信道的用户较多时,对每个用户而言,接收信噪比就降低。所以,CDMA系统的话音编码被设计为多速率的。当接收信噪比较高时,采用较高速率的话音编码,以获得较好的接收话音质量;当接收信噪比较低时,就采用较低的话音编码速率。较低速率的话音编码数据经卷积编码后,可进行字符重复。语音编码数据速率越低,卷积编码后字符可重复的次数越多,使得在较差信道上传输的信号获得更多的保护。(2)反向链路上的信道编码IS-95系统中,反向链路上是用不同的长伪随机序列来区分不同的物理信道的。在用长伪随机序列进行直接扩频调制之前,要对语音数据或信令数据进行编码效率R=1/3(速率集1)或R=1/2(速率集2)、约束长度为K=9的信道编码。由于同样的原因,语音编码同样被设计为多速率的。当接收信噪比较低时。可采用较低的话音编码速率、字符重复的方法,提高在信道上传输时的抗干扰性能。 在实际应用中,比特差错经常成串发生,这是由于持续时间较长的衰落谷点会影响到几个连续的比特,而信道编码仅在检测和校正单个差错和不太长的差错串时才最有效(如RS只能纠正8个字节的错误)。为了纠正这些成串发生的比特差错及一些突发错误,可以运用交织技术来分散这些误差,使长串的比特差错变成短串差错,从而可以用前向码对其纠错,例如:在DVB-C系统中,RS(204,188)的纠错能力是8个字节,交织深度为12,那么纠可抗长度为8×12=96个字节的突......余下全文>>

三:前向纠错编码技术的介绍

前向纠错编码技术,FEC技术FEC技术,具有引入级联信道编码等增益编码技术的特点,可以自动纠正传输误码的优点

四:纠错编码技术有多少种 10分

纠错编码是BCH码、Reed-Solomen码和卷积码.  BCH码和Reed-Solomen码是两种具有代表性的线性分组、循环码,对于二元随机噪声有很强的纠错能力,所以普遍应用于各种实际的差错控制系统.  纠错编码是信道编码的一种,基本原理是发送端在待传输的信息序列后按照一定的规则增加一些用于实现纠错、检错的冗余监督码元,构成一个码字再送到信道传输;在接收端则按照同样的规则监测所接收的码组是否出现错误,若发生的错误数不大于纠错码的纠错、检错能力,则可发生错误并且要求发端重新发送该信息序列或者自动加以纠正。

五:前向纠错编码技术的方法

在使用先进删除码的情况下,数据和前向错误纠正信息被编码到每个数据块内。要恢复数据,系统必须先获取编码系统所要求的最小数量以上的数据块,然后将这些数据块解码以恢复数据。一个CleverSafe系统的要求是,每存储16个数据块,起码需要有10个块才能进行解码并满足读取请求。使用先进删除码的系统对数据块有最小数据量要求,然后再将数据块予以解码。这样做会大幅增加系统的计算负荷。这里需要指出的是它会增加小型写入的开销,因为还没有被覆盖的数据需要被解码,然后结合完新数据后再重新编码。因此,我们已经讨论过的所有使用高水平删除码的系统都采用向外扩展架构。给每4到18个磁盘驱动器配置一个Xeon处理器可以让这些使用复杂ECC方式的系统有足够的能力处理数据的编码和解码。传统中端阵列中每800多个磁盘驱动器才有4个Xeon处理器,很难应付这样的计算开销。

六:GSM用的是什么线性纠错编码

你说的是语音编码还是信道编码?

语音编码

GSM系统采用的是13kb/s的话音编码方案,称为RPE-LTP(规则脉冲激励-长期预测)

信道编码

GSM中使用的编码方式有卷积码和分组码

它们都可以实现纠错。

七:数据通信系统中利用纠错编码进行系统控制的方式有哪四种

差错控制方式基本上分为两类,一类称为“反馈纠错”,另一类称为“前向纠错”。在这 两类基础上又派生出一种称为“混合纠错”。

? (1)反馈纠错

? 这种方式在是发信端采用某种能发现一定程度传输差错的简单编码方法对所传信息进行编码 ,加入少量监督码元,在接收端则根据编码规则收到的编码信号进行检查,一量检测出(发 现)有错码时,即向发信端发出询问的信号,要求重发。发信端收到询问信号时,立即重发已发生传输差错的那部分发信息,直到正确收到为止。所谓发现差错是指在若干接收码元中 知道有一个或一些是错的,但不一定知道错误的准确位置。图6-1给出了“差错控制”的 示意方框图。??

? (2)前向纠错

? 这种方式是发信端采用某种在解码时能纠正一定程度传输差错的较复杂的编码方法,使接收 端在收到信码中不仅能发现错码,还能够纠正错码。在图6-1中,除去虚线所框部分就是前 向纠错的方框示意图。采用前向纠错方式时,不需要反馈信道,也无需反复重发而延误传输时间,对实时传输有利,但是纠错设备比较复杂。

? (3)混合纠错

? 混差错控制方式基本上分为两类,一类称为“反馈纠错”,另一类称为“前向纠错”。在这 两类基础上又派生出一种称为“混合纠错”。

? (1)反馈纠错

? 这种方式在是发信端采用某种能发现一定程度传输差错的简单编码方法对所传信息进行编码 ,加入少量监督码元,在接收端则根据编码规则收到的编码信号进行检查,一量检测出(发 现)有错码时,即向发信端发出询问的信号,要求重发。发信端收到询问信号时,立即重发已发生传输差错的那部分发信息,直到正确收到为止。所谓发现差错是指在若干接收码元中 知道有一个或一些是错的,但不一定知道错误的准确位置。图6-1给出了“差错控制”的 示意方框图。??

? (2)前向纠错

? 这种方式是发信端采用某种在解码时能纠正一定程度传输差错的较复杂的编码方法,使接收 端在收到信码中不仅能发现错码,还能够纠正错码。在图6-1中,除去虚线所框部分就是前 向纠错的方框示意图。采用前向纠错方式时,不需要反馈信道,也无需反复重发而延误传输时间,对实时传输有利,但是纠错设备比较复杂。

? (3)混合纠错

? 混合纠错的方式是:少量纠错在接收端自动纠正,差错较严重,超出自行纠正能力时,就向 发信端发出询问信号,要求重发。因此,“混合纠错”是“前向纠错”及“反馈纠错”两种 方式的混合。

? 对于不同类型的信道,应采用不同的差错控制技术,否则就将事倍功半。

? 反馈纠错可用于双向数据通信,前向纠错则用于单向数字信号的传输,例如广播数字电视系统,因为这种系统没有反馈通道。

合纠错的方式是:少量纠错在接收端自动纠正,差错较严重,超出自行纠正能力时,就向 发信端发出询问信号,要求重发。因此,“混合纠错”是“前向纠错”及“反馈纠错”两种 方式的混合。

? 对于不同类型的信道,应采用不同的差错控制技术,否则就将事倍功半。

? 反馈纠错可用于双向数据通信,前向纠错则用于单向数字信号的传输,例如广播数字电视系统,因为这种系统没有反馈通道。

八:前向纠错的应用场景

大家都知道,数字节目和模拟节目比,效果更清晰,色彩更纯净,通透性更高,画面没有杂质干扰。这都要得益于数字信号出色的抗干扰能力。在数字信号中,为了防止外界信号干扰,保护信号不变异,要进行多重的纠错码设置。数字信号在解码过程中,对错误信号十分敏感,每秒钟只要存在很小的误码,就无法正常解码。而数字卫星信号之所以能顺利播放,又是得益于数字信号中的纠错码的设置。在各种纠错码的设置中,被称做FEC的前向纠错是一个非常重要的防干扰算法。 FEC降低了数字信号的误码率,提高了信号传输的可靠性。因此,在卫视接收的参数中,FEC是个非常重要的数据。图一:FEC在光通信中的位置

九:为什么在话音移动通信中常用纠错编码

叫做增强型全速率编码。相对的概念还有:FR全速率编码、HR半速率编码等

2.如gsm 系统处理流程为:原始的模拟话音—>信源编码—>信道编码—>扩频—>调制发射。

3.信源编码将20ms的话音处理成260bit的信息,编码速率为13Kbps。然后经过信道编码加入冗余信息(用于纠错)形成456bit的信息,编码速率为22.8Kbps。这是全速率编码(FR)

半速率编码是:信源编码将20ms的话音处理成244bit的信息,编码速率为12.2Kbps。然后经过信道编码加入冗余信息(用于纠错)形成456bit的信息,编码速率为22.8Kbps。由于加入的冗余信息照全速率更多,因此纠错效果更好,故被称为增强型全速率编码(EFR)

扫一扫手机访问

发表评论